Synthesis of di-, tri-, tetra- and pentacyclic arene complexes of ruthenium $(\mathrm{II}):\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-polycyclic arene $)$ -$\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}$ and their reactions with NaBH_{4}

Takao Shibasaki, Nobuyuki Komine, Masafumi Hirano *, Sanshiro Komiya
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan

Received 4 November 2006; received in revised form 5 February 2007; accepted 9 February 2007
Available online 24 February 2007

Abstract

The phenanthrene complex of ruthenium $(\mathrm{II}),\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-phenanthrene $)\left(1,5-\eta^{5}-\right.$ cyclooctadienyl) $] \mathrm{PF}_{6}(\mathbf{2 c})$, is prepared by the reaction of $\operatorname{Ru}\left(\eta^{4}-1,5-\mathrm{COD}\right)\left(\eta^{6}-1,3,5-\mathrm{COT}\right)(\mathbf{1})$ with phenanthrene and HPF_{6} in 65% yield. Similar treatments with di- tri-, tetra- and pentacyclic arenes give corresponding polycyclic arene complexes, $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-polycyclic arene $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}[$ polycyclic arene $=$ naphthalene ($\mathbf{2 b}$), anthracene ($\mathbf{2 d}$), triphenylene ($\mathbf{2 e}$), pyrene ($\mathbf{2 f}$) and perylene ($\mathbf{2 g}$)] in $46-90 \%$ yields. The molecular structure of the perylene complex $\mathbf{2 g}$ is characterized by X-ray crystallography. Reaction of $\mathbf{2 c}$ with NaBH_{4} gives a mixture of the 1,5-and 1,4-COD complexes of ruthenium $(0), \mathrm{Ru}\left(\eta^{6}\right.$-phenanthrene $)\left(\eta^{4}-1,5-\mathrm{COD}\right)(3 \mathrm{c})$ and $\mathrm{Ru}\left(\eta^{6}\right.$-phenanthrene $)\left(\eta^{4}-1,4-\mathrm{COD}\right)(\mathbf{4 c})$ in 76% in $1: 8$ molar ratio. The arene exchange reactions among cationic complexes $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-arene $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}(\mathbf{2})$ showed the coordination ability of arenes in the following order: benzene \sim triphenylene $>$ phenanthrene $>$ naphthalene $>$ perylene \sim pyrene $>$ anthracene, suggesting the benzo fused rings, particularly those of acenes, decreasing thermal stability of the arene complex. © 2007 Elsevier B.V. All rights reserved.

Keywords: Ruthenium; Polycyclic arene complex; Protonation; Coordination ability of polycyclic arenes; Hydride reagent

1. Introduction

Much attention has been paid to the arene complexes of ruthenium as starting compounds of various organoruthenium complexes [1], catalysts [2] and organometallic materials [3]. On the other hand, among arene ligands, polycyclic arenes currently attract a great deal of interest in material properties since they would permit introduction of two or more transition metals on the discrete aromatic rings [4]. Such alignment of transition metal fragments is expected to give low-dimensional molecular wires exhibiting semi-conductivity [5], conductivity and ferromagnetism [6]. The arene complexes of ruthenium are generally pre-

[^0]pared by (a) reaction of arene with $\left[\mathrm{RuCl}_{2}\left(\eta^{6} \text {-p-cymene }\right)\right]_{2}$ [7,8], (b) 2e reduction of $\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{4}-1,5-\mathrm{COD}\right)$ [9] or $\left[\mathrm{RuCl}_{2}\left(\eta^{4}-1,5-\mathrm{COD}\right)\right]_{n}[10]$, (c) ligand exchange reaction with arene by use of $\mathrm{Ru}\left(\eta^{6}\right.$-naphthalene $)\left(\eta^{4}-1,5-\mathrm{COD}\right)$ in MeCN [11], or (d) ligand exchange reaction with arene by use of $\operatorname{Ru}\left(\eta^{4}-1,5-\mathrm{COD}\right)\left(\eta^{6}-1,3,5-\mathrm{COT}\right)(\mathbf{1})$ under hydrogen atmosphere [12]. Among these methodologies, Porter has reported the synthesis of polycyclic arene complexes of ruthenium(II) by method a and we have shown the synthesis of polycyclic arene complexes of ruthenium (0) by methods b [13], c and d [4]. However, these conventional methods commonly result in low yields owing to difficulty in purification process. As a much better preparation method, Vitulli and his coworkers reported that protonation of $\mathbf{1}$ with HPF_{6} in aromatic solvents afforded $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-arene $)\left(\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6} \quad$ (arene $=$ benzene, p-xylene, mesitylene and chlorobenzene) in almost quantitative yield [14]. Chaudret, Tkatchenko and their

Scheme 1.
coworkers elucidated the protonation mechanism of $\mathbf{1}$ with HBF_{4} by low temperature NMR studies and X-ray analysis, where the system initially produced $\left[\mathrm{RuH}\left(\eta^{4}\right.\right.$ -$\left.1,5-\mathrm{COD})\left(\eta^{6}-1,3,5-\mathrm{COT}\right)\right] \mathrm{BF}_{4}$ which isomerized to an equilibrium mixture of $\left[\mathrm{RuH}\left(1-5-\eta^{5} \text {-cyclooctadienyl }\right)_{2}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-cyclooctadienyl) $\left.\left(\eta^{4}-1,3-\mathrm{COD}\right)\right] \mathrm{BF}_{4}$ (Scheme 1) [15].

They also reported formation of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-benzene) $(1-5-$ η^{5}-cyclooctadienyl) $] \mathrm{BF}_{4}$ and $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-hexamethylbenzene)-$\left(1-5-\eta^{5} \text { - cyclooctadienyl) }\right]_{4} \mathrm{BF}_{4}$ in high yield by the treatment of the cationic complexes in Scheme 1 with benzene and hexamethylbenzene, respectively. Though only monocyclic arenes have been employed as the ligand in this procedure, this methodology would potentially provide an efficient preparation route for polycyclic arene complexes. We thus focused on this methodology to prepare a variety of polycyclic arene complexes of ruthenium(II). Herein we wish to report synthesis of di-, tri-, tetra- and pentacyclic arene complexes of ruthenium(II) with an η^{5}-cyclooctadienyl ligand, $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-arene) $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}$ and their reduction with hydride reagents giving $\mathrm{Ru}\left(\eta^{6}\right.$-arene) $\left(\eta^{4}\right.$-COD). The relative coordination ability among polycyclic arene compounds is also described.

2. Results and discussion

2.1. Synthesis of cationic cyclooctadienyl complexes having a polycyclic arene ligand

Protonation of $\operatorname{Ru}\left(\eta^{4}-1,5-\mathrm{COD}\right)\left(\eta^{6}-1,3,5-\mathrm{COT}\right)$ (1) by HPF_{6} in the presence of phenanthrene in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature resulted in immediate precipitation of orange powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-phenanthrene) $\left(1-5-\eta^{5}\right.$ - cyclooctadienyl) $] \mathrm{PF}_{6}$ (2c) [Eq. (1)].

Recrystallization of the precipitate from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ gave yellow micro crystals of 2c in 65% yield. Complex 2c was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, and the elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum shows no resonance in the hydride region and characteristically correlated signals at $\delta 6.41(\mathrm{t}, 1 \mathrm{H}), 6.54(\mathrm{t}, 1 \mathrm{H}), 6.74(\mathrm{~d}$, $1 \mathrm{H})$ and $7.47(\mathrm{~d}, 1 \mathrm{H})$ due to the coordinated aromatic protons. The uncoordinated aromatic protons appear at $\delta 7.48$ $(\mathrm{d}, 1 \mathrm{H}), 7.87(\mathrm{dd}, 1 \mathrm{H}), 7.90(\mathrm{dd}, 1 \mathrm{H}), 8.0(\mathrm{~m}, 2 \mathrm{H})$, and 8.49 $(\mathrm{m}, 1 \mathrm{H})$. These data indicates an asymmetric structure of the phenanthrene ring due to coordination to the ruthenium fragment. Correlated resonances at $\delta-0.25$ (qt, $1 \mathrm{H}), 0.83(\mathrm{~m}, 1 \mathrm{H}) 1.00(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dt}$, $1 \mathrm{H}), 3.90(\mathrm{dt}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, 1 \mathrm{H}), 4.44(\mathrm{ddd}, 1 \mathrm{H})$ and $6.24(\mathrm{t}, 1 \mathrm{H})$ are assigned for the η^{5}-cyclooctadienyl ligand attached to the asymmetric (η^{6}-phenanthrene)ruthenium moiety.

Similar treatments of complex 1 with monocyclic benzene, bicyclic naphthalene, tricyclic anthracene, tetracyclic triphenylene and pyrene, and pentacyclic perylene also gave corresponding cationic arene complexes $\mathbf{2 a - g}$ (Chart 1) of which the molecular structure of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-perylene) $\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $) \mathrm{PF}_{6}(\mathbf{2 g})$ was determined by single-crystal X-ray diffraction (Fig. 1).

As shown in Fig. 1, the molecular structure of $\mathbf{2 g}$ is regarded as $\left(\eta^{6}\right.$-perylene) $\left(1-5-\eta^{5}\right.$-cyclooctadienyl)ruthenium(II), which has a basically similar structure to the related complex $\mathrm{Ru}\left(\eta^{6}-p\right.$-tosylate $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) derived from the reaction of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][p \text {-tosylate }]_{2}$ with 1,3-COD [16]. The X-ray analysis of $\mathbf{2 g}$ shows incorporation of 0.5 equiv. of free perylene per 2 g . Consistently, the ${ }^{1} \mathrm{H}$ NMR spectrum of 2 g contains broad signals at δ 8.1 and 7.5 , which are assignable to 0.5 equiv. of free perylene.

It is notable that all cationic complexes $\mathbf{2 a - g}$ were isolated as η^{5}-cyclooctadienyl complexes and no contribution as hydride complexes were observed both in solid and solution states. The η^{5}-cyclooctadienyl and the alternative hydrido $\left(\eta^{6}-1,3,5\right.$-COT $)$ fragments formally act as 5 e and 7 e donors, respectively. This feature may reflect arene ligands having a great propensity to act as 6π donors to form coordinativelly saturated complexes. In fact, Bergens and Rautenstrauch reported formation of $[\mathrm{RuH}(1,3,5-\mathrm{COT})($ diphosphine $)] \mathrm{BF}_{4}$ by the treatment of 1 with a 4 e donor such as Me-DUPHOS in the presence of HBF_{4} [17].

2a

2b

2c 2d

2e

$2 f$

$2 g$
Chart 1.

2.2. Treatment of $\left[R u\left(\eta^{6}\right.\right.$-phenanthrene $)\left(1-5-\eta^{5}-\right.$ cyclooctadienyl) $] P F_{6}(\mathbf{2 c})$ with NaBH_{4}

As we have previously shown, protonation of a COD $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ complex $\mathrm{Ru}\left(\eta^{6}\right.$-phenanthrene) $\left(\eta^{4}-1,5-\mathrm{COD}\right)(3 \mathbf{c})$ by HPF_{6} affords a cationic hydride complex $\left[\mathrm{RuH}\left(\eta^{6}-\right.\right.$ phenanthrene $\left.)\left(\eta^{4}-1,5-\mathrm{COD}\right)\right] \mathrm{PF}_{6}$, which constitutes an

Fig. 1. Molecular structure of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-perylene $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}[\mathbf{2 g}] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5$ perylene together with atom-labeling scheme. All hydrogen atoms, PF_{6}^{-}anion, incorporated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and free perylene are omitted for clarity. Ellipsoids represent 50% probability.
equilibrium with a cyclooctenyl $\left(\mathrm{C}_{8} \mathrm{H}_{13}\right)$ complex $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$ phenanthrene) (1-3- η^{3}-cyclooctenyl) $] \mathrm{PF}_{6}$ having an agostic interaction between the Ru and endo-methylene protons in cyclooctenyl ligand, and the resulting cationic complex can be deprotonated to $3 \mathbf{c}$ by the treatment with base such as NaOH (Scheme 2) [13].

We postulated that treatment of present cyclooctadienyl complex $\quad\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-phenanthrene) $\left(1-5-\eta^{5}\right.$ - cyclooctadienyl) $\mathrm{PF}_{6}(\mathbf{2 c})$ with some hydride $\left(\mathrm{H}^{-}\right)$reagent enabled the divalent cyclooctadienyl $\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)$ complex to become a zerovalent $\operatorname{COD}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ complex, $\mathrm{Ru}\left(\eta^{6}\right.$-phenanthrene $)\left(\eta^{4}-\mathrm{COD}\right)$. In fact, treatment of 2 c with 5 equiv. of NaBH_{4} in THF at $0^{\circ} \mathrm{C}$ gave an orange solid containing two neutral species, $\operatorname{Ru}\left(\eta^{6}\right.$-phenanthrene $)\left(\eta^{4}-1,5-\mathrm{COD}\right)$ (3c) and $\operatorname{Ru}\left(\eta^{6}\right.$-phenanthrene) $\left(\eta^{4}-1,4-\mathrm{COD}\right)$ (4c) [Eq. (2)].

The total yield of the products was 76% and the ratio of $\mathbf{3 c}$ to $\mathbf{4 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $19.5^{\circ} \mathrm{C}$ was $1: 8$ from the ${ }^{1} \mathrm{H}$ NMR spectra. In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution, $\mathbf{4 c}$ gradually decomposed at room temperature while $\mathbf{3 c}$ remained intact. ${ }^{1} \mathrm{H}$ NMR spectrum of the predominant species $\mathbf{4 c}$ resembles $\mathbf{3 c}$, which has been reported by us [13], with characteristic signals of the $1,4-$ COD fragment. Complex $4 \mathbf{c}$ contains coordinated aromatic

Scheme 2.
protons at $\delta 4.81(\mathrm{~d}, 1 \mathrm{H}), 5.43(\mathrm{~d}, 1 \mathrm{H}), 5.91(\mathrm{t}, 1 \mathrm{H})$ and 6.00 ($\mathrm{t}, 1 \mathrm{H}$), and the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY revealed characteristic spin correlations for the $1,4-\mathrm{COD}$ fragment, where the resonance contains a broad quartet at $\delta-0.21(1 \mathrm{H})$ due to the endo- 7^{\prime} methylene proton and two multiplets at $\delta 0.3$ $(2 \mathrm{H})$ and $1.1(1 \mathrm{H})$ due to the exo- 7^{\prime}, endo- 6^{\prime} and -8^{\prime} methylene protons, overlapped resonances at $\delta 1.2,1.5$, and 1.7 assigned to exo- $8^{\prime},-6^{\prime}$, and endo- 3^{\prime} methylene protons, a doublet of triplets at $\delta 2.16(1 \mathrm{H})$ due to the exo- 3^{\prime} methylene proton, and signals at $\delta 2.38(\mathrm{dt}, 1 \mathrm{H}), 2.53(\mathrm{td}, 1 \mathrm{H})$, and $2.7(\mathrm{~m}, 2 \mathrm{H})$ due to the four olefinic protons.

In order to optimize amount of the reducing reagent in this reaction, the amounts of NaBH_{4} were varied. Treatments of $2 \mathbf{c}$ with $1.5,3.0,5.0$ and 10.0 equiv. of NaBH_{4} at $0^{\circ} \mathrm{C}$ for 20 h in THF produced the zerovalent COD complexes in 22% ($\mathbf{3 c}: 4 \mathbf{c}=1: 0$), $32 \% ~(3 \mathbf{c}: 4 \mathbf{c}=1: 4$), 76% $(3 \mathbf{c}: \mathbf{4} \mathbf{c}=1: 8)$ and $52 \%(\mathbf{3 c}: \mathbf{4} \mathbf{c}=1: 12)$ yields respectively. On the other hand, treatment of $\mathbf{2 e}$ with $1.5,3.0,5.0$ and 10.0 equiv. of NaBH_{4} under the same conditions gave the zerovalent COD complexes in $64 \%(3 \mathbf{e}: \mathbf{4 e}=1: 6), 72 \%$ $(\mathbf{3 e}: 4 \mathbf{e}=1: 7), 76 \%(3 \mathbf{e}: 4 \mathbf{e}=1: 2)$ and $54 \%(3 \mathbf{e}: 4 \mathbf{e}=1: 7)$. In both reactions, the best product yield was accomplished when 5.0 equiv. of NaBH_{4} was employed.

Similar treatments of benzene, naphthalene, triphenylene and pyrene complexes $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 e}$ and $\mathbf{2 f}$ with NaBH_{4} also gave corresponding zerovalent COD complexes 3 and 4 (Table 1). For anthracene and perylene complexes, $\mathbf{2 d}$ and $\mathbf{2 g}$, the reductions were failed and free arenes were liberated [18].

These results show exclusive formation of the $1,5-\mathrm{COD}$ complex 3 (for naphthalene) or the 1,4-COD complex 4 (for benzene, pyrene), or formation of mixtures of $\mathbf{3}$ and

Table 1
Reduction of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-arene $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}$ (2) with NaBH_{4} giving $\operatorname{Ru}\left(\eta^{6}\right.$-arene $)\left(\eta^{4}-1,5-\mathrm{COD}\right)(3)$ and $\mathrm{Ru}\left(\eta^{6}\right.$-arene $)\left(\eta^{4}-1,4-\mathrm{COD}\right)(4)$

Entry	Complex	Arene	$\mathbf{3 /} / \%$	$\mathbf{4 /} \%$
1	2a	Benzene	0	64
2	2b	Naphthalene	22	0
3	2c	Phenanthrene	8	68
4	2d	Anthracene	0	0
5	2e	Triphenylene	23	53
6	$\mathbf{2 f}$	Pyrene	0	58
7	$\mathbf{2 g}$	Perylene	0	0

Conditions: 2: $\mathrm{NaBH}_{4}=1: 5$, solvent $=\mathrm{THF}$, temp. $=0{ }^{\circ} \mathrm{C}$, time $=20 \mathrm{~h}$. Yields were calculated on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra.

4 (for phenanthrene, triphenylene). Since isomerization between $\mathbf{3}$ and $\mathbf{4}$ was not observed under these conditions (at $20^{\circ} \mathrm{C}$), complexes 3 and $\mathbf{4}$ were probably formed by independent mechanisms [19]. Attempts for the reduction of $\mathbf{2 c}$ with more powerful hydride reagents such as NaH or LiBH_{4} failed to give $3 \mathbf{c}$ and $\mathbf{4 c}$ but gave black precipitate probably due to ruthenium metal.

2.3. Arene exchange reactions

According to a pioneering study concerning reactions of (η^{6}-naphthalene)ruthenium (0), it is generally believed that $\operatorname{Ru}\left(\eta^{6}\right.$-naphthalene $)\left(\eta^{4}-1,5-\mathrm{COD}\right)(\mathbf{3 b})$ is more labile than the corresponding monocyclic arene complex [9,20]. However, such tendency in arene ligand exchange among polycyclic arenes is unexplored to date. Therefore we studied arene ligand exchange reactions among polycyclic arene complexes [Eq. (3) and Table 2]. When the cationic anthracene complex $\mathbf{2 d}$ was treated with 3.0 equiv. of phenanthrene in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature, slow but quantitative arene exchange reaction took place in the absence of MeCN [21,22] to give the phenanthrene complex 2c and free anthracene (entry 10). On the other hand, treatment of $2 \mathbf{c}$ with 2.6 equiv. of free anthracene under the same conditions did not take place at all (entry 6). These facts clearly suggest that the cationic Ru moiety favors phenanthrene than anthracene. Complex 2c also did not react with perylene at all (entry 9). Similarly addition of 3 equiv. of benzene, naphthalene, triphenylene and pyrene to a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of the phenanthrene complex $\mathbf{2 c}$ at $20^{\circ} \mathrm{C}$, gave benzene complex 2a (86%), naphthalene complex 2b (25%), triphenylene complex $\mathbf{2 e}(59 \%)$ and pyrene complex $2 f(6 \%)$ for 24 h , in $90 \%, 30 \%, 100 \%$ and 47% conversions, respectively (entries 4, 5, 7 and 8).

Table 2
Reaction of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-arene $)\left(\eta^{5}\right.$-cyclooctadienyl) $] \mathrm{PF}_{6}(\mathbf{2})$ with 3 equiv. of arenes at $20{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Entry	Starting complex	Added arene	0 h (\%)		24 h (\%)	
1	2a	Triphenylene ${ }^{\text {a }}$	$\begin{aligned} & \text { 2a } \\ & (100) \end{aligned}$	$\begin{aligned} & \text { 2e } \\ & (0) \end{aligned}$	$\begin{aligned} & \text { 2a } \\ & (100) \end{aligned}$	2e (0)
2	2b	Phenanthrene	$\begin{aligned} & \mathbf{2 b} \\ & (63) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (35) \end{aligned}$	$\begin{aligned} & \mathbf{2 b} \\ & (0) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (86) \end{aligned}$
3	2b	Pyrene	$\begin{aligned} & \mathbf{2 b} \\ & (88) \end{aligned}$	$\begin{aligned} & \text { 2f } \\ & \text { (trace) } \end{aligned}$	$\begin{aligned} & \text { 2b } \\ & (57) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (19) \end{aligned}$
4	2c	Benzene	$\begin{aligned} & \mathbf{2 a} \\ & (10) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (87) \end{aligned}$	$\begin{aligned} & \mathbf{2 a} \\ & (86) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (10) \end{aligned}$
5	2c	Naphthalene	$\begin{aligned} & \mathbf{2 b} \\ & (27) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (88) \end{aligned}$	$\begin{aligned} & \mathbf{2 b} \\ & (25) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (70) \end{aligned}$
6	2c	Anthracene	$\begin{aligned} & \text { 2c } \\ & (100) \end{aligned}$	2d (0)	$\begin{aligned} & \mathbf{2 c} \\ & (100) \end{aligned}$	$\begin{aligned} & \mathbf{2 d} \\ & (0) \end{aligned}$
7	2c	Triphenylene ${ }^{\text {b }}$	$\begin{aligned} & \mathbf{2 c} \\ & (55) \end{aligned}$	$\begin{aligned} & \mathbf{2 e} \\ & \text { (21) } \end{aligned}$	2c (0)	$\begin{aligned} & \mathbf{2 e} \\ & (59) \end{aligned}$
8	2c	Pyrene	$\begin{aligned} & \mathbf{2 c} \\ & (94) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & \text { (trace) } \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (53) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (6) \end{aligned}$
9	2c	Perylene ${ }^{\text {c }}$	$\begin{aligned} & \text { 2c } \\ & (>99) \end{aligned}$	$\begin{aligned} & \mathbf{2 g} \\ & (<1) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (>99) \end{aligned}$	$\underset{(<1)}{\mathbf{2 g}}$
10	2d	Phenanthrene	$\begin{aligned} & \mathbf{2 c} \\ & (<1) \end{aligned}$	$\begin{aligned} & \text { 2d } \\ & (>99) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (100) \end{aligned}$	$\begin{aligned} & \mathbf{2 d} \\ & (0) \end{aligned}$
11	2d	Perylene ${ }^{\text {c }}$	$\begin{aligned} & 2 \mathbf{d} \\ & (45) \end{aligned}$	$\begin{aligned} & \mathbf{2 g} \\ & (57) \end{aligned}$	$\begin{aligned} & \text { 2d } \\ & (14)^{\text {d }} \end{aligned}$	$\begin{aligned} & \mathbf{2 g} \\ & (91)^{\mathrm{d}} \end{aligned}$
12	2 e	Benzene	$\begin{aligned} & \mathbf{2 a} \\ & (0) \end{aligned}$	$\begin{aligned} & \mathbf{2 e} \\ & (100) \end{aligned}$	$\mathbf{2 a}$ (0)	$\begin{aligned} & \text { 2e } \\ & (100) \end{aligned}$
13	2 f	Naphthalene	$\begin{aligned} & \mathbf{2 b} \\ & (23) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (85) \end{aligned}$	$\begin{aligned} & \mathbf{2 b} \\ & (85) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (8) \end{aligned}$
14	2 f	Phenanthrene	$\begin{aligned} & \mathbf{2 c} \\ & (0) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (100) \end{aligned}$	$\begin{aligned} & \mathbf{2 c} \\ & (20) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (29) \end{aligned}$
15	2 f	Anthracene	$\begin{aligned} & \mathbf{2 d} \\ & (19) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (80) \end{aligned}$	$\begin{aligned} & \mathbf{2 d} \\ & (30) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (43) \end{aligned}$
16	2 f	Perylene	$\begin{aligned} & \mathbf{2 f} \\ & (43) \end{aligned}$	$\begin{aligned} & \mathbf{2 g} \\ & (17) \end{aligned}$	$\begin{aligned} & \mathbf{2 f} \\ & (14) \end{aligned}$	$\begin{aligned} & \mathbf{2 g} \\ & (63) \end{aligned}$
17	2g	Anthracene	$\begin{aligned} & \mathbf{2 d} \\ & (0) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 g} \\ & (69) \end{aligned}$	$\begin{gathered} \mathbf{2 d} \\ (8)^{\mathrm{d}} \end{gathered}$	$\begin{aligned} & \mathbf{2 g} \\ & (54)^{\mathrm{d}} \end{aligned}$

${ }^{\text {a }} 4.1$ equiv.
${ }^{\mathrm{b}} 1.1$ equiv.
${ }^{\text {c }}$ Part of perylene remained unsolved because of poor solubility.
d 58 h .

Pyrene complex $2 \mathbf{f}$ is less stable than naphthalene complex $\mathbf{2 b}$ (entry 13). Treatments of $\mathbf{2 f}$ with 3 equiv. of anthracene and perylene gave a mixture of $\mathbf{2 f}$ and anthracene complex 2d ($\mathbf{2 f}: 43 \%$, $\mathbf{2 d}: \mathbf{3 0} \%$), and a mixture of $\mathbf{2 f}$ and perylene complex 2g (2f: $14 \%, \mathbf{2 g}$: 63\%), respectively (entries 15 and 16). Though decomposition during the reaction in an NMR tube was not negligible for entries $2,3,7,8$ and $14-17$, these reactions were basically reversible. It is notable that the arene exchange reactions between benzene and triphenylene did not proceed even in the presence of MeCN at $20^{\circ} \mathrm{C}$. Since MeCN is believed to act as an auxiliary ligand to assist in the ring-slippage to promote the arene exchange reaction [22], these findings in benzene and triphenylene complexes reflect tight binding to the ruthenium center, probably owing to a great barrier to the η^{4}-arene intermediate, under these conditions.

Inspite of these ambiguous arene exchange reactions, stability of these complexes: $\mathbf{2 a} \sim \mathbf{2 e}>\mathbf{2 c}>\mathbf{2 b}>\mathbf{2 g} \sim$
$\mathbf{2 f}>\mathbf{2 d}$. In other words, the order of coordination ability of arenes toward $\left[\mathrm{Ru}\left(1-5-\eta^{5} \text {-cyclooctadienyl) }\right]^{+}\right.$fragment is as follows: benzene \sim triphenylene $>$ phenanthrene $>$ naphthalene $>$ perylene \sim pyrene $>$ anthracene. This tendency can be correlated with a loss of aromaticity in the uncoordinated part of the aromatic compounds, since coordination of arenes to the ruthenium center leads to the increase of bond localizations in the uncoordinated part $[13,23]$. We can therefore conclude by these observations that the benzo fused rings, particularly those of acenes, decrease the thermal stability.

3. Concluding remarks

Present results show a preparation method of polycyclic arene complexes $\quad\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-arene $)\left(1-5-\eta^{5}\right.$-cyclooctadienyl) $\mathrm{PF}_{6}(\mathbf{2})$ in moderate to high yield. The arene exchange reactions revealed coordination ability of arenes toward $\left[\mathrm{Ru}\left(1-5-\eta^{5} \text {-cyclooctadienyl) }\right]^{+}\right.$fragment being in the
following order; benzene, triphenylene $>$ phenanthrene $>$ naphthalene $>$ perylene \sim pyrene $>$ anthracene. This is the first example to show the difference in coordination ability among these polycyclic arene ligands.

4. Experimental

4.1. General procedures

All manipulations and reactions were performed under dry nitrogen with use of standard Schlenk and vacuum line techniques. Diethyl ether, THF, benzene and hexane were distilled over benzophenone ketyl, and dichloromethane was distilled from Drierite; these solvents were stored under nitrogen atmosphere. The compound $\mathrm{Ru}\left(\eta^{4}-1,5-\right.$ COD) $\left(\eta^{6}-1,3,5-\mathrm{COT}\right)(\mathbf{1})$ was prepared according to literature procedure but magnetic stirring was used instead of sonication [24]. All other reagents were obtained from commercial suppliers (Wako Pure Chemical Industries, Aldrich). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL LA300 (300.4 MHz for ${ }^{1} \mathrm{H}$). Dichloromethane- d_{2} and chlo-roform- d_{1} were distilled over $\mathrm{P}_{4} \mathrm{O}_{10}$ and stored under nitrogen. Chemical shifts (δ) are given in ppm , relative to tetramethylsilane for ${ }^{1} \mathrm{H}$ and external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ for ${ }^{31} \mathrm{P}$. All coupling constants are given in Hz . Elemental analyses were carried out on a Perkin-Elmer 2400 series II CHN analyzer.

4.2. Prepartion of $\left[R u\left(\eta^{6}\right.\right.$-benzene $)\left(1-5-\eta^{5}-\right.$ cyclooctadiernyl) $] P F_{6}$ (2a)

To an $\mathrm{Et}_{2} \mathrm{O}$ solution $(6 \mathrm{ml})$ of $\mathrm{Ru}\left(\eta^{4}-1,5-\mathrm{COD}\right)\left(\eta^{6}\right.$ -1,3,5-COT) (1) ($220 \mathrm{mg}, 0.70 \mathrm{mmol}$), excess HPF_{6} (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was washed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml} \times 2)$ and hexane $(5 \mathrm{ml} \times 2)$ to give gray powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-benzene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $] \mathrm{PF}_{6}$ (2a) in 34% yield ($103 \mathrm{mg}, 0.24 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ 0.07 (qt, $J=14.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, endo-7' $-\mathrm{CH}_{2}$), $1.25(\mathrm{~m}, 1 \mathrm{H}$, exo-7'- CH_{2}), $1.44\left(\mathrm{~m}, 2 \mathrm{H}\right.$, endo $-6^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.96(\mathrm{~m}$, 2 H , exo- $6^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 4.47(\mathrm{dt}, J=8.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}$, $1^{\prime}-$ and $5^{\prime}-\mathrm{CH}$), 4.83 (br. t, 2H, $2^{\prime}-$ and $4^{\prime}-\mathrm{CH}$), 6.20 (s, $\left.6 \mathrm{H}, \mathrm{C}_{6} H_{6}\right), 6.61\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CH}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.6 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 296 \mathrm{~K}$): - 143.6 (sep, $\left.J=711 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}\right)$.

4.3. Prepartion of $\left[R u\left(\eta^{6}\right.\right.$-naphthalene) $\left(1-5-\eta^{5}\right.$ cyclooctadienyl) $] P F_{6}$ ($2 \boldsymbol{b}$)

To an $\mathrm{Et}_{2} \mathrm{O}$ solution (6 ml) of $\mathbf{1}(103 \mathrm{mg}, 0.33 \mathrm{mmol})$ with naphthalene $(53.2 \mathrm{mg}, 0.45 \mathrm{mmol})$ excess HPF_{6} (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml} / 6 \mathrm{ml})$ at $-30{ }^{\circ} \mathrm{C}$ to give yellow powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-naphthalene) $(1-$ $5-\eta^{5}$-cycloocatadienyl) PF_{6} (2b) in 65% yield $(103 \mathrm{mg}$, $0.21 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-0.26(\mathrm{qt}, J=13.7$,
$2.7 \mathrm{~Hz}, 1 \mathrm{H}$, endo-7'- CH_{2}), $1.00\left(\mathrm{~m}, 3 \mathrm{H}\right.$, exo $-7^{\prime}-\mathrm{CH}_{2}$ and endo- $6^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}\right.$, exo- $6^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right)$, $4.08\left(\mathrm{dt}, J=8.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\mathrm{and} 5^{\prime}-\mathrm{CH}\right), 4.39(\mathrm{br} \mathrm{t}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{CH}\right), 6.27(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.3^{\prime}-\mathrm{CH}\right), 6.35\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 1-\right.$ and $4-\mathrm{CH}$ or 2 - and 3$\mathrm{C} H), 6.72\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 2-\right.$ and $3-\mathrm{CH}$ or $1-$ and $\left.4-\mathrm{CH}\right)$, $7.76(\mathrm{~m}, 4 \mathrm{H}, 5-, 6-$, 7- and $8-\mathrm{CH}) .{ }^{1} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ (121.6 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 296 \mathrm{~K}$): $\delta-143.3$ (sept, $J=713 \mathrm{~Hz}$, PF_{6}^{-}). m.p. $=129-131^{\circ} \mathrm{C}$ (decomp.). Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{PRu}: \mathrm{C}, 44.91 ; \mathrm{H}, 3.98 \%$. Found: C, 44.71 ; H, 4.25%.

4.4. Preparation of $\left[R u\left(\eta^{6}\right.\right.$-phenathrene $)\left(1-5-\eta^{5}-\right.$ cyclooctadienyl) $] P F_{6}$ (2c)

To an $\mathrm{Et}_{2} \mathrm{O}$ solution (6 ml) of $\mathbf{1}(104 \mathrm{mg}, 0.33 \mathrm{mmol})$ with phenanthrene $(72.5 \mathrm{mg}, 0.41 \mathrm{mmol})$ excess $\mathrm{HPF}_{6}(6$ drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ ($2 \mathrm{ml} / \mathrm{f} 143$ $6 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ to give orange powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-phenanthrene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) PF_{6} (2c) in 65% yield $(114 \mathrm{mg}, 0.22 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-0.25(\mathrm{qt}$, $J=14.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, endo- $7^{\prime}-\mathrm{CH}_{2}$), 0.83 (ddt, $J=16.5$, $14.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$, exo-7' $-\mathrm{CH}_{2}$), $1.00\left(\mathrm{~m}, 2 \mathrm{H}\right.$, endo- 6^{\prime} - and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}\right.$, exo- $\left.6^{\prime}-\mathrm{and}-8^{\prime}-\mathrm{CH}_{2}\right), 3.82(\mathrm{dt}$, $J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-$ or $\left.5^{\prime}-\mathrm{C} H\right), 3.90(\mathrm{dt}, J=9.0$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-$ or $\left.1^{\prime}-\mathrm{CH}\right), 4.22(\mathrm{ddd}, \quad J=9.0,6.9$, $1.2 \mathrm{~Hz}, \quad 1 \mathrm{H}, 2^{\prime}-$ or $\left.4^{\prime}-\mathrm{C} H\right), 4.44(\mathrm{ddd}, \quad J=9.0,6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-$ or $\left.2^{\prime}-\mathrm{CH}\right), 6.24\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\right.$ $\mathrm{CH}), 6.41(\mathrm{t}, ~ J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ or $3-\mathrm{CH}), 6.54(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ or $2-\mathrm{CH}), 6.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ or $4-\mathrm{CH}), 7.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $1-\mathrm{CH}), 7.47(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ or $8-\mathrm{CH}), 7.87(\mathrm{dd}, J=9.3,5.4 \mathrm{~Hz}$, $1 \mathrm{H}, 6-$ or $7-\mathrm{CH}), 7.90(\mathrm{dd}, J=9.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 7$ - or $6-\mathrm{CH}), 8.0(\mathrm{~m}, 8-$ or $5-\mathrm{CH}$ and 9 - or $10-\mathrm{CH}), 8.49(\mathrm{~m}$, $10-$ or $9-\mathrm{C} H) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(121.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 296 K): -143.5 (sep, $J=711 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}$). m.p. $=110-120^{\circ} \mathrm{C}$ (decomp.). Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{PRu}: \mathrm{C}, 49.72 ; \mathrm{H}$, 3.98%. Found: C, 49.23; H, 4.42%.

4.5. Preparation of $\left[R u\left(\eta^{6}\right.\right.$-anthracene) $\left(1-5-\eta^{5}\right.$ cyclooctadienyl) $] P F_{6}$ (2d)

To an $\mathrm{Et}_{2} \mathrm{O}$ solution $(6 \mathrm{ml})$ of $\mathbf{1}(106 \mathrm{mg}, 0.33 \mathrm{mmol})$ with anthracene ($70.2 \mathrm{mg}, 0.39 \mathrm{mmol}$) excess $\mathrm{HPF}_{6}(6$ drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml} / 6 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ to give yellow powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-anthracene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) PFF_{6} (2d) $\cdot 0.3$ anthracene in 46% yield ($107 \mathrm{mg}, 0.15 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ -0.38 (qt, $J=13.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, endo-7' $-\mathrm{CH}_{2}$), 0.74 (ddt, $J=16.5,13.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, endo $-6^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 0.88$ ($\mathrm{m}, 1 \mathrm{H}$, exo-7'-CH2), 1.56 (ddqui, $J=16.5,2.0,1.8 \mathrm{~Hz}$, 2 H , exo- $6^{\prime}-$ and $8^{\prime}-\mathrm{CH}_{2}$), 4.22 (br.dt, $J=8,4 \mathrm{~Hz}, 2 \mathrm{H}$, $1^{\prime}-$ and $5^{\prime}-\mathrm{CH}$), 4.40 (br.t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}$ - and 4^{\prime} -
$\mathrm{CH}), 6.12\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{C} H\right), 6.37\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}\right.$, 1 - and $4-\mathrm{CH}$ or $2-$ and $3-\mathrm{C} H), 6.92\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 2-\right.$ and $3-\mathrm{CH}$ or $1-$ and $4-\mathrm{C} H) .7 .58\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 5-\right.$ and $8-\mathrm{CH}$ or $6-$ and $7-\mathrm{CH}), 7.99\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 6-\right.$ and $7-\mathrm{CH}$ or 5 - and $8-\mathrm{CH}), 8.43$ (s, 2H, 9- and $10-\mathrm{CH}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.6 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 296 \mathrm{~K}\right): \delta-143.5$ (sept, $J=711 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}$). m.p. $=134-137^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{PRu} \cdot 0.3$ anthracene: C, $54.21 ; \mathrm{H}, 4.15 \%$. Found: C, 54.65; H, 4.48\%.

4.6. Preparation of $\left[R u\left(\eta^{6}\right.\right.$-triphenylene $)\left(1-5-\eta^{5}-\right.$ cyclooctadienyl) $] P F_{6}(\mathbf{2 e})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution (6 ml) of $\mathbf{1}(106 \mathrm{mg}, 0.34 \mathrm{mmol})$ with triphenylene $(88.3 \mathrm{mg}, 0.38 \mathrm{mmol})$ excess HPF_{6} (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml} / 4 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ to give yellow crystal of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-triphenylene $)\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $] \mathrm{PF}_{6}$ (2e) in 90% yield ($178 \mathrm{mg}, 0.31 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-0.31$ (qt, $J=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, endo-$7^{\prime}-\mathrm{CH}_{2}$), 0.65 (ddt, $J=16.8,13.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, endo- 6^{\prime} and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 0.88\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo-7' $\left.-\mathrm{CH}_{2}\right), 1.5(\mathrm{dm}$, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$, exo- $6^{\prime}-$ and $\left.8^{\prime}-\mathrm{CH}_{2}\right), 3.64(\mathrm{dt}, J=9.0$, $3.6 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-$ and $\left.5^{\prime}-\mathrm{CH}\right), 4.32\left(\mathrm{tm}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{CH}\right), 6.14\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CH}\right), 6.51\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$, $2 \mathrm{H}, 2-$ and $3-\mathrm{C} H), 7.30\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 1-\mathrm{and} 4-\mathrm{CH}\right), 7.78$ (td, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 6-$ and $11-\mathrm{CH}$ or $7-$ and $10-\mathrm{CH}$), 7.86 (td, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 7-$ and $10-\mathrm{CH}$ or $6-$ and $11-$ CH), $8.34(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 5-$ and $12-\mathrm{CH}$ or $8-$ and $9-\mathrm{CH}$), $8.64(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{and} 9-\mathrm{CH}$ or 5- and $12-\mathrm{CH}) .{ }^{1} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 296$ $\mathrm{K}): \delta-143.2$ (sept, $J=713 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}$). m.p. $=160-162{ }^{\circ} \mathrm{C}$ (decomp.). Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{PRu}$: C, 53.70; H, 3.99%. Found: C, 53.43 ; H, 4.23%.

4.7. Preparation of $\left[R u\left(\eta^{6}-\right.\right.$ pyrene $)\left(1-5-\eta^{5}-\right.$ cyclooctadienyl) $] P F_{6}(\mathbf{2 f})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution (6 ml) of $\mathbf{1}(107 \mathrm{mg}, 0.34 \mathrm{mmol})$ with pyrene ($82.3 \mathrm{mg}, 0.41 \mathrm{mmol}$) excess HPF_{6} (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml} / 4 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ to give orange powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-pyrene $)\left(1-5-\eta^{5}\right.$-cycloocatadienyl $\left.)\right] \mathrm{PF}_{6}$ (2f) in 62% yield ($117 \mathrm{mg}, 0.21 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta-0.4\left(\mathrm{qt}, 1 \mathrm{H}\right.$, endo-7'- $\left.\mathrm{CH}_{2}\right), 1.0\left(\mathrm{~m}, 3 \mathrm{H}\right.$, exo-7'-, endo- $\mathrm{6}^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.5\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo- 6^{\prime} - or $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.6(\mathrm{~m}, 1 \mathrm{H}$, exo- 8^{\prime} - or $-6^{\prime}-\mathrm{CH}_{2}$), $3.7\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{CH}\right), 3.87$ (br.t, $2 \mathrm{H}, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{CH}_{2}\right), 5.71\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}\right), 6.76(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{and} 3-$ $\mathrm{CH}), 7.76(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{and} 10-\mathrm{C} H), 8.2(\mathrm{~m}, 3 \mathrm{H}$, $6-, 7-$ and $8-\mathrm{CH}), 8.24(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{and} 9$ $\mathrm{CH}) .{ }^{1} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.6 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 296 \mathrm{~K}\right): \delta-143.3$ (sept, $J=713 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}$). m.p. $=164-168^{\circ} \mathrm{C}$ (decomp.). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{PRu}$: C, $51.90 ; \mathrm{H}, 3.81 \%$. Found: C, $52.50 ; \mathrm{H}, 4.22 \%$.

4.8. Preparation of $\left[R u\left(\eta^{6}\right.\right.$-perylene $)\left(1-5-\eta^{5}-\right.$ cyclooctadienyl) $] P F_{6}(\mathbf{2 g})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution (6 ml) of $\mathbf{1}(107 \mathrm{mg}, 0.34 \mathrm{mmol})$ with perylene $(98.1 \mathrm{mg}, 0.39 \mathrm{mmol})$ excess HPF_{6} (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml} / 4 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ to give yellow powder of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-perylene $)\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $\mathrm{PF}_{6}(\mathbf{2 g})$ in 64% yield ($158 \mathrm{mg}, 0.22 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-0.35$ (br.q, $J=14 \mathrm{~Hz}, 1 \mathrm{H}$, endo-7' $-\mathrm{CH}_{2}$), $0.9\left(\mathrm{~m}, 3 \mathrm{H}\right.$, exo-7'-, endo- $6^{\prime}-$ and $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.5(\mathrm{~m}, 2 \mathrm{H}$, exo- $6^{\prime}-$ and $-8^{\prime}-\mathrm{CH}_{2}$), 3.66 (br.dt, $J=8,4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-$ or $5^{\prime}-\mathrm{CH}$), 3.73 (br.dt, $J=8,4 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-$ or $1^{\prime}-\mathrm{C} H$), 3.98 (br.q, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-$ and $\left.4^{\prime}-\mathrm{CH}\right), 5.88(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{CH}\right), 6.5(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{and} 3-\mathrm{CH}), 6.93(\mathrm{~m}, 1 \mathrm{H}, 3-$ $\mathrm{CH}), \quad 7.49(\mathrm{~d}, \quad J=8.1 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad 12-\mathrm{CH}), \quad 7.57 \quad(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{CH})$, $7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 7.9(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{and} 6-$ $\mathrm{C} H), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{C} H), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{C} H), 8.22(\mathrm{~d}, \quad J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \quad 10-\mathrm{C} H) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.6 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \quad 296 \mathrm{~K}$): $\delta-143.5$ (sept, $J=711 \mathrm{~Hz}, \quad \mathrm{PF}_{6}^{-}$). m.p. $=162-164^{\circ} \mathrm{C}$ (decomp). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{PRu} \cdot 0.5$ perylene: C, $62.38 ; \mathrm{H}, 4.00 \%$. Found: C, 61.91 ; H, 4.20%.

4.9. Reduction of $2 \boldsymbol{a}$ with NaBH_{4}

A THF solution (6 ml) of a mixture of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-benzene)-(1-5- η^{5}-cycloocatadienyl) $] \mathrm{PF}_{6}$ (2a) $(75 \mathrm{mg}, 0.17 \mathrm{mmol})$ and 5 equiv. of $\mathrm{NaBH}_{4}(32.0 \mathrm{mg}, 0.85 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 20 h . The resulting solution was evaporated to dryness and then the residue was extracted with hexane $(10 \mathrm{ml} \times 3)$ to give an orange solution, which was concentrated to give orange powder. After removal of the solution by cannular tube, the collected powder was dried under reduced pressure to give orange powder of $\mathbf{4 a}$ in 64% yield $(32.0 \mathrm{mg}$, $0.11 \mathrm{mmol}) .4 \mathrm{a}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 0.54(\mathrm{~m}, 2 \mathrm{H}$, endo-$3^{\prime}-$ and $\left.-7^{\prime}-\mathrm{CH}_{2}\right), 1.1\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo-7' $\left.-\mathrm{CH}_{2}\right), 1.6-2.2(\mathrm{~m}$, $4 \mathrm{H}, 6^{\prime}-$ and $\left.8^{\prime}-\mathrm{CH}_{2}\right), 2.41(\mathrm{td}, J=13.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, exo-$\left.3^{\prime}-\mathrm{CH}_{2}\right), 2.67\left(\mathrm{td}, J=7.8,4.5 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\right.$ and $5^{\prime}-\mathrm{CH}$ or $2^{\prime}-$ and $\left.4^{\prime}-\mathrm{CH}\right), 2.79\left(\mathrm{td}, J=7.8,4.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\right.$ and $4^{\prime}-\mathrm{CH}$ or $1^{\prime}-$ and $\left.5^{\prime}-\mathrm{C} H\right), 5.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} H_{6}\right)$. m.p. $=64-$ $68^{\circ} \mathrm{C}$ (decomp.).

4.10. Reduction of $2 \boldsymbol{b}$ with NaBH_{4}

Complex $\mathbf{2 b}$ was treated with NaBH_{4} by similar workup described for 2a. $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-naphthalene $)\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $] \mathrm{PF}_{6}$ (2b) $(91.1 \mathrm{mg}, 0.19 \mathrm{mmol}), \mathrm{NaBH}_{4}(36.4 \mathrm{mg}$, 0.96 mmol) at $0^{\circ} \mathrm{C}$ for 20 h . The NMR analysis of this the product (orange powder, 17.7 mg) by use of 1,4 -dioxane as an internal standard showed formation of complex 3b (22%) with unidentified species. 3b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 1.71\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}-4^{\prime}-7^{\prime}-\right.$ and $\left.8^{\prime}-\mathrm{CH}_{2}\right), 4.39\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 1^{\prime}-\right.$, $2^{\prime}-, 5^{\prime}-$ and $\left.6^{\prime}-\mathrm{CH}\right), 4.75\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 1-\right.$ and $4-\mathrm{CH}$ or $2-$ and $3-\mathrm{CH}), 6.05\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 2-\right.$ and $3-\mathrm{CH}$ or $1-$ and 4 -
$\mathrm{CH}), 7.40(\mathrm{~m}, 4 \mathrm{H}, 5-, 6-, 7-$ and $8-\mathrm{CH})$. m.p. $=187-190^{\circ} \mathrm{C}$ (decomp.).

4.11. Reduction of 2 c with NaBH_{4}

Complex 2c was treated with NaBH_{4} by similar workup described for 2a. $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-phenanthrene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $] \mathrm{PF}_{6}$ (2c) (201 mg, 0.38 mmol$), \mathrm{NaBH}_{4}(71.5 \mathrm{mg}$, 1.9 mmol) at $0^{\circ} \mathrm{C}$ for 20 h . Orange powder of a mixture of 3 c and $\mathbf{4 c}\left(1.0: 8.3\right.$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $\left.19.5^{\circ} \mathrm{C}\right)$ in 76% yield $(111 \mathrm{mg}, 0.28 \mathrm{mmol}) .3 \mathrm{c}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.6(\mathrm{~m}$, 2 H , endo $-3^{\prime}-$ and $-7^{\prime}-\mathrm{CH}_{2}$ (or endo- $4^{\prime}-$ and $-8^{\prime}-\mathrm{CH}_{2}$)), 1.7 ($\mathrm{m}, 6 \mathrm{H}$, exo-3'-, $-4^{\prime}-$, -7^{\prime} - and $-8^{\prime}-\mathrm{CH}_{2}$ and endo -4^{\prime} - and -$8^{\prime}-\mathrm{CH}_{2}$ (or endo- $3^{\prime}-$ and $\left.7^{\prime}-\mathrm{CH}_{2}\right)$), $3.0\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\right.$ and $5^{\prime}-$ CH (or $2^{\prime}-$ and $\left.6^{\prime}-\mathrm{CH}\right)$), $3.3\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\right.$ and $6^{\prime}-\mathrm{CH}$ (or $1^{\prime}-$ and $\left.5^{\prime}-\mathrm{C} H\right)$), $4.91(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{C} H), 5.48(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 6.07(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ or $3-$ $\mathrm{C} H), 6.11(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ or $2-\mathrm{CH}), 7.33(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CH}), 7.59(\mathrm{~m}, 2 \mathrm{H}, 6-$ and $7-\mathrm{CH}), 7.64$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{C} H), 7.86(\mathrm{~m}, 1 \mathrm{H}, 5-$ or $8-\mathrm{CH})$, $8.13(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{and} 5-\mathrm{CH}) .4 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ -0.21 (br.q, $J=12 \mathrm{~Hz}, 1 \mathrm{H}$, endo-7' $-\mathrm{CH}_{2}$), $0.3(\mathrm{~m}, 2 \mathrm{H}$, exo-7'- CH_{2} and endo- 6^{\prime} - or $\left.-8^{\prime}-\mathrm{CH}_{2}\right), 1.1\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo- $8^{\prime}-$ or $-6^{\prime}-\mathrm{CH}_{2}$), 1.2 (overlapped with incorporated hexane, exo- 6^{\prime} - or $-8^{\prime}-\mathrm{CH}_{2}$), 1.5 (overlapped with signals due to 3c, exo-8'- or $-6^{\prime}-\mathrm{CH}_{2}$), 1.7 (overlapped with signals due to 3 c , endo-3'- CH_{2}), $2.16(\mathrm{dt}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$, exo-$\left.3^{\prime}-\mathrm{CH}_{2}\right), 2.38\left(\mathrm{td}, J=8.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\right.$ or $\left.5^{\prime}-\mathrm{CH}\right), 2.53$ (td, $J=8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-$ or $\left.2^{\prime}-\mathrm{CH}\right), 2.7\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\right.$ or $4^{\prime}-\mathrm{CH}$ and $5^{\prime}-$ or $\left.1^{\prime}-\mathrm{C} H\right), 4.81(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ or $4-\mathrm{C} H), 5.43(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $1-\mathrm{C} H), 5.91(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ or $3-\mathrm{CH}), 6.00(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ or $2-\mathrm{CH}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ or $10-\mathrm{CH}), 7.56(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-$ or $9-\mathrm{CH}), 7.6(\mathrm{~m}, 2 \mathrm{H}, 6-$ and $7-\mathrm{CH})$, $7.86(\mathrm{~m}, 1 \mathrm{H}, 5-$ or $8-\mathrm{CH}), 8.23(\mathrm{~m}, 1 \mathrm{H}, 8-$ or $5-\mathrm{CH})$. m.p. $=122-124^{\circ} \mathrm{C}$ (decomp.). Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Ru}$: C, 68.19 ; H, 5.72%. Found: C, 68.38 ; H, 5.29%.

4.12. Reduction of $2 \boldsymbol{d}$ with NaBH_{4}

Complex 2d was treated with NaBH_{4} by similar workup described for 2a. $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-anthracene) (1-5- η^{5}-cycloocatadienyl) $\mathrm{PF}_{6} \quad(\mathbf{2 d}) \cdot 0.3$ anthracene $(111.2 \mathrm{mg}, \quad 0.19 \mathrm{mmol})$, $\mathrm{NaBH}_{4}(42.6 \mathrm{mg}, 1.13 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 20 h . Pale yellow powder (33.3 mg), which was characterized as a crude free anthracene was obtained.

4.13. Reduction of $2 e$ with NaBH_{4}

A THF solution (6 ml) of a mixture of $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-triphenylene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $] \mathrm{PF}_{6}(\mathbf{2 e})(86.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and 5 equiv. of $\mathrm{NaBH}_{4}(42.0 \mathrm{mg}, 1.10 \mathrm{mmol})$ was stirred at $0^{\circ} \mathrm{C}$ for 20 h . The resulting solution was evaporated to dryness and then the residue was extracted with benzene $(5 \mathrm{ml} \times 3)$ to give an orange solution, which was concentrated to give orange powder. After removal of the solution by cannular tube, the collected powder was under reduced
pressure to give orange powder (57.1 mg). The NMR analysis of the powder showed formation of $\mathbf{3 e}$ in 23% yield and 4e in 53% yield. $3 \mathrm{e}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-0.02(\mathrm{~m}, 1 \mathrm{H}$, endo-7'- CH_{2}), $0.3\left(\mathrm{~m}, 2 \mathrm{H}\right.$, exo- $7^{\prime}-\mathrm{CH}_{2}$ and endo- 6^{\prime} - or -8^{\prime} CH_{2}), $1.1\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo- 8^{\prime} - or $-6^{\prime}-\mathrm{CH}_{2}$), 1.2 (overlapped with incorporated hexane, exo- 6^{\prime} - or $-8^{\prime}-\mathrm{CH}_{2}$), 1.5 (overlapped with signals due to $\mathbf{3 c}$, exo- 8^{\prime} - or $-6^{\prime}-\mathrm{CH}_{2}$), 1.7 (overlapped with signals due to $\mathbf{3 e}$, endo $-3^{\prime}-\mathrm{CH}_{2}$), $2.05(\mathrm{dt}, J=12.9$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$, exo-3' $-\mathrm{CH}_{2}$), 2.29 (td, $J=8.4,4.2 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-$ and $\left.5^{\prime}-\mathrm{CH}\right), 2.43\left(\mathrm{td}, J=8.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\right.$ and $\left.2^{\prime}-\mathrm{CH}\right)$, $5.58\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 2-\right.$ and $\left.3-\mathrm{C} H\right), 6.01\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 1-\right.$ and $4-\mathrm{CH}), 7.78(\mathrm{td}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{and} 11-\mathrm{CH}$ or $7-$ and $10-\mathrm{C} H), 7.60(\mathrm{td}, J=7.2,1.5 \mathrm{~Hz}, 4 \mathrm{H}, 7-, 10-\mathrm{CH}$ and $6-, 11-\mathrm{CH}), 8.17(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{and} 12-$ CH or $8-$ and $9-\mathrm{C} H), 8.60(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{and}$ $9-\mathrm{CH}$ or $5-$ and $12-\mathrm{CH})$. $4 \mathrm{e}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.62$ ($\mathrm{m}, 8 \mathrm{H}, 3^{\prime}-, 4^{\prime}-7^{\prime}-$ and $8^{\prime}-\mathrm{CH}_{2}$), 3.0 (br.s, $4 \mathrm{H}, 1^{\prime}-, 2^{\prime}-, 5^{\prime}-$ and $\left.6^{\prime}-\mathrm{CH}\right), 5.64\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}, 2-\right.$ and $\left.3-\mathrm{CH}\right), 6.15\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$, $2 \mathrm{H}, 1-\mathrm{and} 4-\mathrm{CH}), 7.64(\mathrm{~m}, 4 \mathrm{H}, 7-, 10-\mathrm{CH}$ and $6-, 11-\mathrm{CH})$, $8.11(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 5-$ and $12-\mathrm{CH}$ or $8-$ and $9-\mathrm{CH})$, $8.59(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 8-$ and $9-\mathrm{CH}$ or $5-$ and $12-\mathrm{CH})$. Similar treatment of $\mathbf{2 e}(89.9 \mathrm{mg}, 0.15 \mathrm{mmol})$ with 1.6 equiv. of $\mathrm{NaBH}_{4}(9.1 \mathrm{mg}, 0.24 \mathrm{mmol})$ gave $3 \mathrm{e}(9 \%)$ and $\mathbf{4 e}(55 \%)$. Treatment of $2 \mathrm{e}(77.4 \mathrm{mg}, 0.13 \mathrm{mmol})$ with 3.4 equiv. of $\mathrm{NaBH}_{4}(16.7 \mathrm{mg}, 0.44 \mathrm{mmol})$ gave $\mathbf{3 e}(9 \%)$ and $4 \mathrm{e}(63 \%)$. Treatment of $2 \mathbf{e}(35.1 \mathrm{mg}, 0.087 \mathrm{mmol})$ with 11 equiv. of $\mathrm{NaBH}_{4}(35.1 \mathrm{mg}, 0.92 \mathrm{mmol})$ gave $3 \mathrm{e}(7 \%)$ and $4 \mathrm{e}(47 \%)$. m.p. $=168-170^{\circ} \mathrm{C}$ (decomp.).

4.14. Reduction of $2 f$ with NaBH_{4}

Complex $2 \mathbf{f}$ was treated with NaBH_{4} by similar workup described for 2a. $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-pyrene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) PF_{6} ($\mathbf{2 f}$) $\quad(167 \mathrm{mg}, \quad 0.30 \mathrm{mmol}), \quad \mathrm{NaBH}_{4}(57.1 \mathrm{mg}$, 1.51 mmol) at $0^{\circ} \mathrm{C}$ for 20 h . Orange powder of $\mathbf{4 f}$ in 58% yield ($72.0 \mathrm{mg}, 0.17 \mathrm{mmol}$). $4 \mathbf{f}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 0.09$ (br.t, $J=12 \mathrm{~Hz}, 2 \mathrm{H}$, endo- 6^{\prime} and $-8^{\prime}-\mathrm{CH}_{2}$), 0.25 (qt, $J=12,2 \mathrm{~Hz}, 1 \mathrm{H}$, endo $\left.-7^{\prime}-\mathrm{CH}_{2}\right), 1.2\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo $\left.-7^{\prime}-\mathrm{CH}_{2}\right)$, $1.4\left(\mathrm{~m}, 2 \mathrm{H}\right.$, exo- $6^{\prime}-$ and $\left.8^{\prime}-\mathrm{CH}\right), 1.6$ (br, endo $-3^{\prime}-\mathrm{CH}_{2}$), 1.95 (dt, $J=12.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}$, exo- $3^{\prime}-\mathrm{CH}$), 2.05 (td, $J=8.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-$ and $5^{\prime}-\mathrm{CH}$ or $2^{\prime}-$ and $\left.4^{\prime}-\mathrm{CH}\right)$ $2.18\left(\mathrm{td}, J=8.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\right.$ and $4^{\prime}-\mathrm{CH}$ or $1^{\prime}-$ and $5^{\prime}-$ $\mathrm{CH}), 5.75(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{and} 3-\mathrm{CH}), 5.87(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{C} H), 7.36(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{and} 10-$ CH or $5-$ and $9-\mathrm{CH}), 7.67(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, 5-$ and $9-\mathrm{CH}$ or $4-$ and $10-\mathrm{C} H), 7.73(\mathrm{dd}, J=7.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH})$, 7.5 (br,t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 6-$ and $8-\mathrm{CH}$), and incorporated 0.5 equiv. of pyrene was observed at 8.03 (dd, $J=7.2$, $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 4 \mathrm{H}), 8.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$. m.p. $=138-140^{\circ} \mathrm{C}$ (decomp.).

4.15. Reduction of 2 g with NaBH_{4}

Complex 2 g was treated with NaBH_{4} by similar workup described for $2 \mathbf{a}$. $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-perylene) $\left(1-5-\eta^{5}\right.$-cycloocatadienyl) $\mathrm{PF}_{6}(\mathbf{2 d}) \cdot 0.5$ perylene $(70.8 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{NaBH}_{4}$
$(22.9 \mathrm{mg}, 0.60 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 20 h . Pale yellow powder $(38.6 \mathrm{mg})$, which was characterized as crude free perylene with trace amount of perylene complexes, was obtained.

4.16. Ligand exchange reaction of arenes

Complex $\mathbf{2 a}(7.3 \mathrm{mg}, 0.012 \mathrm{mmol})$ and 4.1 equiv. of triphenylene ($11.5 \mathrm{mg}, 0.050 \mathrm{mmol}$) were placed in an NMR tube under vacuum into which dry $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.60 \mathrm{ml})$ was introduced by valve-to-valve distillation. The reaction system was placed at $20^{\circ} \mathrm{C}$ for 20 h . The product was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum on the basis of 1,4-dioxane as an internal standard (Table 2 entry 1). Similarly, following reactions were also monitored by the ${ }^{1} \mathrm{H}$ NMR spectroscopy. Although part of ruthenium complexes decomposed during the reaction and the integration of signals may involve unavoidable errors, the results were shown in Table 2. entry 2: 2b $(13.9 \mathrm{mg}$, $0.029 \mathrm{mmol})$ with 3.0 equiv. of phenanthrene $(15.4 \mathrm{mg}$, $0.086 \mathrm{mmol})$. entry 3: 2b $(24.9 \mathrm{mg}, 0.052 \mathrm{mmol})$ with 3.1 equiv. of pyrene ($33.6 \mathrm{mg}, 0.16 \mathrm{mmol}$). entry 4: 2c $(12.4 \mathrm{mg}, 0.023 \mathrm{mmol})$ with 3.0 equiv. of benzene (6.2 $\mu \mathrm{l}, 0.069 \mathrm{mmol})$. entry 5: 2c $(9.9 \mathrm{mg}, 0.018 \mathrm{mmol})$ with 3.1 equiv. of naphthalene $(7.3 \mathrm{mg}, 0.056 \mathrm{mmol})$. entry 6 : 2c ($15.8 \mathrm{mg}, 0.029 \mathrm{mmol}$) with 2.6 equiv. of anthracene $(13.2 \mathrm{mg}, 0.074 \mathrm{mmol})$. entry 7: 2c $(14.7 \mathrm{mg}, 0.027 \mathrm{mmol})$ with 1.1 equiv. of triphenylene ($6.8 \mathrm{mg}, 0.029 \mathrm{mmol}$). entry 8: 2c $(20.3 \mathrm{mg}, 0.038 \mathrm{mmol})$ with 2.9 equiv. of pyrene $(23.1 \mathrm{mg}, \quad 0.11 \mathrm{mmol})$. entry $9: \mathbf{2 c}(15.4 \mathrm{mg}$, 0.029 mmol) with 3.0 equiv. of perylene $(21.8 \mathrm{mg}$, $0.086 \mathrm{mmol})$. entry $10: \mathbf{2 d}(20.3 \mathrm{mg}, 0.034 \mathrm{mmol})$ with 3.0 equiv. of phenanthrene $(18.1 \mathrm{mg}, 0.010 \mathrm{mmol})$. entry 11 : 2d $(15.7 \mathrm{mg}, 0.026 \mathrm{mmol})$ with 3.1 equiv. of perylene ($20.1 \mathrm{mg}, 0.080 \mathrm{mmol}$). entry $12: \mathbf{2 e}(19.5 \mathrm{mg}, 0.033 \mathrm{mmol})$ with 3.0 equiv. of benzene ($8.9 \mu \mathrm{l}, 0.10 \mathrm{mmol}$). entry 13: $\mathbf{2 f}$ $(12.8 \mathrm{mg}, 0.023 \mathrm{mmol})$ with 2.8 equiv. of naphthalene ($8.4 \mathrm{mg}, 0.065 \mathrm{mmol}$). entry 14: 2f $(13.5 \mathrm{mg}, 0.024 \mathrm{mmol})$ with 3.1 equiv. of phenanthrene ($13.4 \mathrm{mg}, 0.075 \mathrm{mmol}$). entry 15: 2f $(14.9 \mathrm{mg}, 0.027 \mathrm{mmol})$ with 2.9 equiv. of anthracene ($14.2 \mathrm{mg}, 0.079 \mathrm{mmol}$). entry $16: \mathbf{2 f}(14.6 \mathrm{mg}$, 0.026 mmol) with 3.1 equiv. of perylene $(20.1 \mathrm{mg}$, $0.080 \mathrm{mmol})$. entry 17: 2g ($13.9 \mathrm{mg}, 0.018 \mathrm{mmol})$ with 3.1 equiv. of anthracene ($10.1 \mathrm{mg}, 0.056 \mathrm{mmol}$).

4.17. X-ray structure analysis of complex $\mathbf{2 g}$

Single crystals of $\mathbf{2 g}$ suitable for X-ray analysis were obtained from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$. A single crystal was selected by using monochromated microscope and mounted on the top of capillary using Paraton-N oil. Diffraction experiments were performed on a Rigaku RASA-7R diffractometer with graphite-monochromated $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71069 \AA)$. The crystallographic data and details associated with data collection for $\mathbf{2 g}$ are given in Table 3. The data were processed using the teXsan crystal solution package operating on a SGI O2 workstation. The structure was solved by Patterson Meth-

Table 3
Crystallographic data for complex $\mathbf{2 g} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5$ perylene

Formula	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{PRu}$
Formula weight	675.42
Crystal system	Triclinic
Lattice type	Primitive
$a\left(\AA \AA^{\circ}\right)$	$11.514(5)$
$b(\AA)$	$15.544(7)$
$c(\AA)$	$11.038(5)$
$\alpha\left({ }^{\circ}\right)$	$108.57(4)$
$\beta\left({ }^{\circ}\right)$	$116.50(3)$
$\gamma\left({ }^{\circ}\right)$	$79.97(4)$
$V\left(\AA^{3}\right)$	$1674(1)$
Space group	$P-1(\mathrm{No.2})$
Z value	2
$D_{\text {calc }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	1.339
$F(000)$	674.00
$\mu($ Mo K $\alpha)\left(\mathrm{cm}{ }^{-1}\right)$	7.22
Temp. (K)	200
Scan-type	$\omega-2 \theta$
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	55.0
Number of reflections measured	Total: 8051, unique: 7671
Structure solution	Patterson methods (SAPI)
Number of observations $(I>3.00 \sigma(I))$	3578
Number of variables	443
Reflection/parameter ratio	8.08
R	0.0936
R_{w}	0.133
GOF	1.216

ods (SAPI). An absorption correction was applied with the program PSI-scan. All non-hydrogen atoms were found on difference maps and were refined anisotropically. All hydrogen atoms were located in the calculated positions. Crystallographic thermal parameters are given in Table 3.

Acknowledgments

This work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan. Authors thank Ms. S. Kiyota and Ms. Y. Sakate for elemental analyses.

Appendix A. Supplementary material

CCDC 627199 contains the supplementary crystallographic data for $\mathbf{2 g}$. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: $(+44)$ 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2007.02.023.

References

[1] (a) H. Le Bozec, D. Touchard, P.H. Dixneuf, Adv. Organomet. Chem. 29 (1989) 163;
(b) M.A. Bennett, Complexes of ruthenium abd osmium containing $\eta^{2}-\eta^{6}$ hydrocarbon ligands: (iii) complexes containing six- seven- and eight-membered rings, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7. Pergamon, Oxford, UK, p. 549;
(c) M.A. Bennett, Coord. Chem. Rev. 166 (1997) 225;
(d) G. Bodes, F.W. Feinemann, G. Jobi, J. Klodwig, S. Newmann,
U. Zenneck, Eur. J. Inorg. Chem. (2003) 281;
(e) P. Pertici, A. Verrazzani, E. Pitzalis, A.M. Caporusso, G. Vitulli, J. Organomet. Chem. 621 (2001) 246.
[2] (a) P. Pertici, V. Ballantini, P. Salvadori, M.A. Bennett, Organometallics 14 (1995) 2565;
(b) A. Fukuoka, T. Nagano, S. Furuta, M. Yoshizawa, M. Hirano, S. Komiya, Bull. Chem. Soc. Jpn. 71 (1998) 1409;
(c) J. Takaya, J.F. Hartwig, J. Am. Chem. Soc. 127 (2005) 5756;
(d) C. Daguenet, R. Scopelliti, P.J. Dyson, Organometallics 23 (2004) 4849;
(e) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 117 (1995) 7562;
(f) P. Brandt, P. Roth, P.G. Andersson, J. Org. Chem. 69 (2004) 4885;
(g) A.J. Davenport, D.L. Davies, J. Fawcett, D.R. Russell, Dalton Trans. (2004) 1481;
(h) R. Castarlenas, D. Sémeril, A.F. Noel, A. Demonceau, P.H. Dixneuf, J. Organomet. Chem. 663 (2002) 235.
[3] (a) P.J. Fagan, M.D. Ward, J.V. Caspar, J.C. Calabrese, P.J. Krusic, J. Am. Chem. Soc. 110 (1988) 2981;
(b) K.-D. Piltzko, B. Wehrle, B. Rapko, J. Dannheim, V. Boekelheide, J. Am. Chem. Soc. 112 (1990) 6556;
(c) M. Kimura, H. Adbel-Halim, D.W. Robinson, D.O. Cowan, J. Organomet. Chem. 403 (1991) 365;
(d) H. Nagashima, T. Fukahori, K. Aoki, K. Itoh, J. Am. Chem. Soc. 115 (1993) 10430;
(e) R. Bhalla, C.J. Boxwell, S.B. Duckett, P.J. Dyson, D.G. Humphrey, J.W. Steed, u P. Suman, Organometallics 21 (2002) 924.
[4] T. Shibasaki, N. Komine, M. Hirano, S. Komiya, Organometallics 25 (2006) 523, and references cited therein.
[5] J.K. Burdett, E. Canadell, Organometallics 4 (1985) 805.
[6] (a) M.D. Ward, Organometallics 6 (1987) 754;
(b) J.-M. Lehn, Angew, Chem., Int. Ed. Engl. 27 (1988) 89;
(c) J.S. Miller, A.J. Epstein, W.M. Reiff, Science 240 (1988) 40.
[7] M.A. Bennett, T.W. Matheson, G.B. Robertson, A.K. Smith, P.A. Tucker, Inorg. Chem. 19 (1980) 1014.
[8] L.C. Porter, J.R. Polam, J. Mahmoud, Organometallics 13 (1994) 2092.
[9] M.A. Bennett, H. Neumann, M. Thomas, X. Wang, P. Pertici, P. Salvadori, G. Vitulli, Organometallics 10 (1991) 3237.
[10] M. Crocker, M. Green, J.A.K. Howard, N.C. Norman, D.M. Thomas, J. Chem. Soc., Dalton Trans. (1990) 2299.
[11] (a) G. Vitulli, P. Pertici, P. Salvadori, J. Chem. Soc., Dalton Trans. (1984) 2255;
(b) F. Heinemann, J. Klodwig, F. Knoch, M. Wündisch, U. Zenneck, Chem. Ber. 130 (1997) 123.
[12] (a) P. Pertici, G. Simonelli, G. Vitulli, G. Deganello, P. Sandrini, A. Mantovani, J. Chem. Soc., Chem. Commun. (1977) 132;
(b) P. Pertici, G. Vitulli, M. Paci, L. Porri, J. Chem. Soc., Dalton Trans. (1980) 1961;
(c) P. Pertici, G. Vitulli, R. Lazzaroni, P. Salvadori, P. Barili, J. Chem. Soc., Dalton Trans. (1982) 1019;
(d) P. Pertici, G. Vitulli, C. Carlini, F. Ciardelli, J. Mol. Catal. 11 (1981) 353.
[13] M. Hirano, T. Shibasaki, S. Komiya, M.A. Bennett, Organometallis 21 (2002) 5738.
[14] G. Vitulli, P. Pertici, C. Bigelli, Gazz. Chim. Itali. 115 (1985) 79.
[15] (a) F. Bouachir, B. Chaudret, F. Dahan, F. Agbossou, I. Tkatchenko, Organometallics 10 (1991) 455;
(b) F. Bouachir, B. Chaudret, I. Tkatchenko, J. Chem. Soc., Chem. Commun. (1986) 94.
[16] M. Stebler-Röthlisberger, A. Salzer, H.B. Bürgi, A. Ludi, Organometallics 5 (1986) 298.
[17] Bergens and Rautenstrauch reported formation of $[\mathrm{RuH}(1,3,5-$ COT $)($ diphosphine $)] \mathrm{BF}_{4}$ and $\quad\left[\mathrm{Ru}\left(1-5-\eta^{5}\right.\right.$-cyclooctadienyl)(diphosphine) BF_{4} by the treatment of 1 with Me-DUPHOS and BINAP in the presence of HBF_{4}, respectively. This fact suggests flexible transformation between hydrido $\left(\eta^{6}-1,3,5-\mathrm{COT}\right)$ and η^{5}-cyclooctadienyl moieties. Although hydrido($\left.\eta^{6}-1,3,5-\mathrm{COT}\right)$ species was not observed for 2 at all, such contribution may also help facile slippage of the 6π arene ligand in 2: J.A. Wiles, S.H. Bergens, K.P.M. Vanhessche, D.A. Dobbs, V. Rautenstrauch, Angew. Chem. Int. Ed. 40 (2001) 914.
[18] Accompanied with formation of free anthracene, trace amount of signals appeared in $\delta 7.7,7.4,5.4,5.2,4.9,3.9,3.4$, and aliphatic regions for the reaction of $\mathbf{2 d}$ with NaBH_{4}. Though it is clear that these signals are different from those of $\mathrm{Ru}\left(\eta^{6}\right.$-anthracene $)\left(\eta^{4}-1,5\right.$ COD) [13], further identification of these signals was difficult because of very low content of these species. For the reaction of $\mathbf{2 g}$ with NaBH_{4}, free perylene was dominantly obtained. Though this product also contained small amount of species, which might be assignable to perylene complexes, further identification was also difficult.
[19] Although the reaction mechanism for this reduction reaction is not clear to date, the selectivity in the reduction giving 3 and 4 would be due to independent reaction mechanisms: one is the hydride attack on the ruthenium center followed by migration of the $\mathrm{Ru}-\mathrm{H}$ to the cycloocatdienyl fragment, and the other is a direct attack of hydride ion on the cyclooctadienyl fragment.
[20] G. Vitulli, P. Pertici, P. Salvadori, J. Chem. Soc., Dalton Trans. (1984) 2255.
[21] Acetonitrile was reported to accelerate ligand exchange reaction of arenes. see ref [11a].
[22] M.A. Bennett, Z. Lu, X. Wang, M. Bown, D.C.R. Hockless, J. Am. Chem. Soc. 120 (1998) 10409.
[23] (a) B.J. Nicholson, J. Am. Chem. Soc. 88 (1966) 5156;
(b) R.H. MItchell, Y. Chen, N. Khalifa, P. Zhou, J. Am. Chem. Soc. 120 (1998) 1785;
(c) J.E. McGrady, R. Stranger, M. Bown, M.A. Bennett, Organometallics 15 (1996) 3109.
[24] (a) P. Pertici, G. Vitulli, Inorg. Synth. 22 (1983) 176;
(b) K. Itoh, H. Nagashima, T. Ohshima, N. Oshima, H. Nishiyama, J. Organomet. Chem. 272 (1984) 179.

[^0]: Abbreviations: COD, cyclooctadiene $\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$; COT, cyclooctatriene $\left(\mathrm{C}_{8} \mathrm{H}_{10}\right) ;$ acac, acetylacetonato (2,4-pentanedionato, $\left.\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)$.
 ${ }^{*}$ Corresponding author. Tel./fax: +81423887044.
 E-mail address: hrc@cc.tuat.ac.jp (M. Hirano).

