

Available online at www.sciencedirect.com





Journal of Organometallic Chemistry 692 (2007) 2385-2394

www.elsevier.com/locate/jorganchem

### Synthesis of di-, tri-, tetra- and pentacyclic arene complexes of ruthenium(II):[Ru( $\eta^6$ -polycyclic arene)-(1-5- $\eta^5$ -cyclooctadienyl)]PF<sub>6</sub> and their reactions with NaBH<sub>4</sub>

Takao Shibasaki, Nobuyuki Komine, Masafumi Hirano \*, Sanshiro Komiya

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan

> Received 4 November 2006; received in revised form 5 February 2007; accepted 9 February 2007 Available online 24 February 2007

#### Abstract

The phenanthrene complex of ruthenium(II),  $[Ru(\eta^6-phenanthrene)(1,5-\eta^5-cyclooctadienyl)]PF_6$  (**2c**), is prepared by the reaction of  $Ru(\eta^4-1,5-COD)(\eta^6-1,3,5-COT)$  (**1**) with phenanthrene and HPF<sub>6</sub> in 65% yield. Similar treatments with di- tri-, tetra- and pentacyclic arenes give corresponding polycyclic arene complexes,  $[Ru(\eta^6-polycyclic arene)(1-5-\eta^5-cyclooctadienyl)]PF_6$  [polycyclic arene = naph-thalene (**2b**), anthracene (**2d**), triphenylene (**2e**), pyrene (**2f**) and perylene (**2g**)] in 46–90% yields. The molecular structure of the perylene complex **2g** is characterized by X-ray crystallography. Reaction of **2c** with NaBH<sub>4</sub> gives a mixture of the 1,5- and 1,4-COD complexes of ruthenium(0),  $Ru(\eta^6-phenanthrene)(\eta^4-1,5-COD)$  (**3c**) and  $Ru(\eta^6-phenanthrene)(\eta^4-1,4-COD)$  (**4c**) in 76% in 1:8 molar ratio. The arene exchange reactions among cationic complexes [ $Ru(\eta^6-arene)(1-5-\eta^5-cyclooctadienyl)$ ]PF<sub>6</sub> (**2**) showed the coordination ability of arenes in the following order: benzene ~ triphenylene > phenanthrene > naphthalene > perylene ~ pyrene > anthracene, suggesting the benzo fused rings, particularly those of acenes, decreasing thermal stability of the arene complex. (© 2007 Elsevier B.V. All rights reserved.

Keywords: Ruthenium; Polycyclic arene complex; Protonation; Coordination ability of polycyclic arenes; Hydride reagent

### 1. Introduction

Much attention has been paid to the arene complexes of ruthenium as starting compounds of various organoruthenium complexes [1], catalysts [2] and organometallic materials [3]. On the other hand, among arene ligands, polycyclic arenes currently attract a great deal of interest in material properties since they would permit introduction of two or more transition metals on the discrete aromatic rings [4]. Such alignment of transition metal fragments is expected to give low-dimensional molecular wires exhibiting semi-conductivity [5], conductivity and ferromagnetism [6]. The arene complexes of ruthenium are generally pre-

\* Corresponding author. Tel./fax: +81 423 887 044. *E-mail address:* hrc@cc.tuat.ac.jp (M. Hirano).

pared by (a) reaction of arene with  $[RuCl_2(\eta^6-p-cymene)]_2$ [7,8], (b) 2e reduction of  $Ru(acac)_2(\eta^4-1,5-COD)$  [9] or  $[\operatorname{RuCl}_2(\eta^4-1,5-\operatorname{COD})]_n$  [10], (c) ligand exchange reaction with arene by use of  $Ru(\eta^6$ -naphthalene)( $\eta^4$ -1,5-COD) in MeCN [11], or (d) ligand exchange reaction with arene by use of  $Ru(\eta^4-1,5-COD)(\eta^6-1,3,5-COT)$  (1) under hydrogen atmosphere [12]. Among these methodologies, Porter has reported the synthesis of polycyclic arene complexes of ruthenium(II) by method a and we have shown the synthesis of polycyclic arene complexes of ruthenium (0) by methods b [13], c and d [4]. However, these conventional methods commonly result in low yields owing to difficulty in purification process. As a much better preparation method, Vitulli and his coworkers reported that protonation of 1 with HPF<sub>6</sub> in aromatic solvents afforded  $[Ru(\eta^6-arene)(\eta^5-cyclooctadienyl)]PF_6$  (arene = benzene, p-xylene, mesitylene and chlorobenzene) in almost quantitative vield [14]. Chaudret, Tkatchenko and their

Abbreviations: COD, cyclooctadiene ( $C_8H_{12}$ ); COT, cyclooctatriene ( $C_8H_{10}$ ); acac, acetylacetonato (2,4-pentanedionato,  $C_5H_7O_2$ ).

<sup>0022-328</sup>X/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.02.023



Scheme 1.

coworkers elucidated the protonation mechanism of **1** with HBF<sub>4</sub> by low temperature NMR studies and X-ray analysis, where the system initially produced [RuH( $\eta^{4}$ -1,5-COD)( $\eta^{6}$ -1,3,5-COT)]BF<sub>4</sub> which isomerized to an equilibrium mixture of [RuH(1-5- $\eta^{5}$ -cyclooctadienyl)<sub>2</sub>]BF<sub>4</sub> and [Ru( $\eta^{5}$ -cyclooctadienyl)( $\eta^{4}$ -1,3-COD)]BF<sub>4</sub> (Scheme 1) [15].

They also reported formation of  $[Ru(n^6-benzene)(1-5 \eta^{5}$ -cyclooctadienyl)]BF<sub>4</sub> and [Ru( $\eta^{6}$ -hexamethylbenzene)- $(1-5-\eta^5-$  cyclooctadienyl)]BF<sub>4</sub> in high yield by the treatment of the cationic complexes in Scheme 1 with benzene and hexamethylbenzene, respectively. Though only monocyclic arenes have been employed as the ligand in this procedure, this methodology would potentially provide an efficient preparation route for polycyclic arene complexes. We thus focused on this methodology to prepare a variety of polycyclic arene complexes of ruthenium(II). Herein we wish to report synthesis of di-, tri-, tetra- and pentacyclic arene complexes of ruthenium(II) with an  $\eta^5$ -cyclooctadienyl ligand, [Ru( $\eta^6$ -arene)(1-5- $\eta^5$ -cyclooctadienyl)]PF<sub>6</sub> and their reduction with hydride reagents giving  $Ru(\eta^6$ -arene)( $\eta^4$ -COD). The relative coordination ability among polycyclic arene compounds is also described.

### 2. Results and discussion

### 2.1. Synthesis of cationic cyclooctadienyl complexes having a polycyclic arene ligand

Protonation of  $\text{Ru}(\eta^{4}\text{-}1,5\text{-}\text{COD})(\eta^{6}\text{-}1,3,5\text{-}\text{COT})$  (1) by HPF<sub>6</sub> in the presence of phenanthrene in Et<sub>2</sub>O at room temperature resulted in immediate precipitation of orange powder of [Ru( $\eta^{6}\text{-}\text{phenanthrene}$ )(1-5- $\eta^{5}$ - cyclooctadie-nyl)]PF<sub>6</sub> (**2c**) [Eq. (1)].



Recrystallization of the precipitate from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O gave yellow micro crystals of 2c in 65% yield. Complex 2c was characterized by <sup>1</sup>H and <sup>31</sup>P{<sup>1</sup>H} NMR, and the elemental analysis. The <sup>1</sup>H NMR spectrum shows no resonance in the hydride region and characteristically correlated signals at  $\delta$  6.41 (t, 1H), 6.54 (t, 1H), 6.74 (d, 1H) and 7.47 (d, 1H) due to the coordinated aromatic protons. The uncoordinated aromatic protons appear at  $\delta$  7.48 (d, 1H), 7.87 (dd, 1H), 7.90 (dd, 1H), 8.0 (m, 2H), and 8.49 (m, 1H). These data indicates an asymmetric structure of the phenanthrene ring due to coordination to the ruthenium fragment. Correlated resonances at  $\delta$  -0.25 (qt, 1H), 0.83 (m, 1H) 1.00 (m, 2H), 1.61 (m, 2H), 3.82 (dt, 1H), 3.90 (dt, 1H), 4.22 (ddd, 1H), 4.44 (ddd, 1H) and 6.24 (t, 1H) are assigned for the  $\eta^5$ -cyclooctadienyl ligand attached to the asymmetric ( $\eta^6$ -phenanthrene)ruthenium moiety.

Similar treatments of complex 1 with monocyclic benzene, bicyclic naphthalene, tricyclic anthracene, tetracyclic triphenylene and pyrene, and pentacyclic perylene also gave corresponding cationic arene complexes 2a-g (Chart 1) of which the molecular structure of  $[Ru(\eta^6-peryl$  $ene)(1-5-\eta^5-cyclooctadienyl)]PF_6$  (2g) was determined by single-crystal X-ray diffraction (Fig. 1).

As shown in Fig. 1, the molecular structure of 2g is regarded as  $(\eta^6$ -perylene)(1-5- $\eta^5$ -cyclooctadienyl)ruthenium(II), which has a basically similar structure to the related complex Ru( $\eta^6$ -*p*-tosylate)(1-5- $\eta^5$ -cyclooctadienyl) derived from the reaction of [Ru(H<sub>2</sub>O)<sub>6</sub>][*p*-tosylate]<sub>2</sub> with 1,3-COD [16]. The X-ray analysis of 2g shows incorporation of 0.5 equiv. of free perylene per 2g. Consistently, the <sup>1</sup>H NMR spectrum of 2g contains broad signals at  $\delta$ 8.1 and 7.5, which are assignable to 0.5 equiv. of free perylene.

It is notable that all cationic complexes 2a-g were isolated as  $\eta^5$ -cyclooctadienyl complexes and no contribution as hydride complexes were observed both in solid and solution states. The  $\eta^5$ -cyclooctadienyl and the alternative hydrido( $\eta^6$ -1,3,5-COT) fragments formally act as 5e and 7e donors, respectively. This feature may reflect arene ligands having a great propensity to act as  $6\pi$ donors to form coordinativelly saturated complexes. In fact, Bergens and Rautenstrauch reported formation of [RuH(1,3,5-COT)(diphosphine)]BF<sub>4</sub> by the treatment of 1 with a 4e donor such as Me-DUPHOS in the presence of HBF<sub>4</sub> [17].



Chart 1.

### 2.2. Treatment of $[Ru(\eta^6-phenanthrene)(1-5-\eta^5-cyclooctadienyl)]PF_6$ (**2c**) with NaBH<sub>4</sub>

As we have previously shown, protonation of a COD  $(C_8H_{12})$  complex  $Ru(\eta^6$ -phenanthrene)( $\eta^4$ -1,5-COD) (3c) by HPF<sub>6</sub> affords a cationic hydride complex [RuH( $\eta^6$ -phenanthrene)( $\eta^4$ -1,5-COD)]PF<sub>6</sub>, which constitutes an



Fig. 1. Molecular structure of  $[Ru(\eta^6\text{-perylene})(1-5\cdot\eta^5\text{-cyclooctadie-nyl})]PF_6$  [2g] · CH<sub>2</sub>Cl<sub>2</sub> · 0.5perylene together with atom-labeling scheme. All hydrogen atoms,  $PF_6^-$  anion, incorporated CH<sub>2</sub>Cl<sub>2</sub> and free perylene are omitted for clarity. Ellipsoids represent 50% probability.

equilibrium with a cyclooctenyl ( $C_8H_{13}$ ) complex [Ru( $\eta^6$ phenanthrene)(1-3- $\eta^3$ -cyclooctenyl)]PF<sub>6</sub> having an agostic interaction between the Ru and *endo*-methylene protons in cyclooctenyl ligand, and the resulting cationic complex can be deprotonated to **3c** by the treatment with base such as NaOH (Scheme 2) [13].

We postulated that treatment of present cyclooctadienyl complex [Ru( $\eta^6$ -phenanthrene)(1-5- $\eta^5$ - cyclooctadienyl)]PF<sub>6</sub> (**2c**) with some hydride (H<sup>-</sup>) reagent enabled the divalent cyclooctadienyl (C<sub>8</sub>H<sub>11</sub>) complex to become a zerovalent COD (C<sub>8</sub>H<sub>12</sub>) complex, Ru( $\eta^6$ -phenanthrene)( $\eta^4$ -COD). In fact, treatment of **2c** with 5 equiv. of NaBH<sub>4</sub> in THF at 0 °C gave an orange solid containing two neutral species, Ru( $\eta^6$ -phenanthrene)( $\eta^4$ -1,5-COD) (**3c**) and Ru( $\eta^6$ -phenanthrene)( $\eta^4$ -1,4-COD) (**4c**) [Eq. (2)].



The total yield of the products was 76% and the ratio of 3c to 4c in CD<sub>2</sub>Cl<sub>2</sub> at 19.5 °C was 1:8 from the <sup>1</sup>H NMR spectra. In CD<sub>2</sub>Cl<sub>2</sub> solution, 4c gradually decomposed at room temperature while 3c remained intact. <sup>1</sup>H NMR spectrum of the predominant species 4c resembles 3c, which has been reported by us [13], with characteristic signals of the 1,4-COD fragment. Complex 4c contains coordinated aromatic





protons at  $\delta$  4.81 (d, 1H), 5.43 (d,1H), 5.91 (t, 1H) and 6.00 (t, 1H), and the <sup>1</sup>H–<sup>1</sup>H COSY revealed characteristic spin correlations for the 1,4-COD fragment, where the resonance contains a broad quartet at  $\delta$  -0.21 (1H) due to the *endo*-7' methylene proton and two multiplets at  $\delta$  0.3 (2H) and 1.1 (1H) due to the *exo*-7', *endo*-6' and -8' methylene protons, overlapped resonances at  $\delta$  1.2, 1.5, and 1.7 assigned to *exo*-8', -6', and *endo*-3' methylene protons, a doublet of triplets at  $\delta$  2.16 (1H) due to the *exo*-3' methylene proton, and signals at  $\delta$  2.38 (dt, 1H), 2.53 (td, 1H), and 2.7 (m, 2H) due to the four olefinic protons.

In order to optimize amount of the reducing reagent in this reaction, the amounts of NaBH<sub>4</sub> were varied. Treatments of **2c** with 1.5, 3.0, 5.0 and 10.0 equiv. of NaBH<sub>4</sub> at 0 °C for 20 h in THF produced the zerovalent COD complexes in 22% (**3c:4c** = 1:0), 32% (**3c:4c** = 1:4), 76% (**3c:4c** = 1:8) and 52% (**3c:4c** = 1:12) yields respectively. On the other hand, treatment of **2e** with 1.5, 3.0, 5.0 and 10.0 equiv. of NaBH<sub>4</sub> under the same conditions gave the zerovalent COD complexes in 64% (**3e:4e** = 1:6), 72% (**3e:4e** = 1:7), 76% (**3e:4e** = 1:2) and 54% (**3e:4e** = 1:7). In both reactions, the best product yield was accomplished when 5.0 equiv. of NaBH<sub>4</sub> was employed.

Similar treatments of benzene, naphthalene, triphenylene and pyrene complexes 2a, 2b, 2e and 2f with NaBH<sub>4</sub> also gave corresponding zerovalent COD complexes 3and 4 (Table 1). For anthracene and perylene complexes, 2d and 2g, the reductions were failed and free arenes were liberated [18].

These results show exclusive formation of the 1,5-COD complex **3** (for naphthalene) or the 1,4-COD complex **4** (for benzene, pyrene), or formation of mixtures of **3** and

Table 1 Reduction of  $[Ru(\eta^6-arene)(1-5-\eta^5-cyclooctadienyl)]PF_6$  (2) with NaBH<sub>4</sub> giving  $Ru(\eta^6-arene)(\eta^4-1.5-COD)$  (3) and  $Ru(\eta^6-arene)(\eta^4-1.4-COD)$  (4)

| Entry | Complex | Arene        | 3/% | <b>4/</b> % |
|-------|---------|--------------|-----|-------------|
| 1     | 2a      | Benzene      | 0   | 64          |
| 2     | 2b      | Naphthalene  | 22  | 0           |
| 3     | 2c      | Phenanthrene | 8   | 68          |
| 4     | 2d      | Anthracene   | 0   | 0           |
| 5     | 2e      | Triphenylene | 23  | 53          |
| 6     | 2f      | Pyrene       | 0   | 58          |
| 7     | 2g      | Perylene     | 0   | 0           |

*Conditions*: **2**: NaBH<sub>4</sub> = 1:5, solvent = THF, temp. = 0 °C, time = 20 h. Yields were calculated on the basis of the <sup>1</sup>H NMR spectra.

4 (for phenanthrene, triphenylene). Since isomerization between 3 and 4 was not observed under these conditions (at 20 °C), complexes 3 and 4 were probably formed by independent mechanisms [19]. Attempts for the reduction of 2c with more powerful hydride reagents such as NaH or LiBH<sub>4</sub> failed to give 3c and 4c but gave black precipitate probably due to ruthenium metal.

#### 2.3. Arene exchange reactions

According to a pioneering study concerning reactions of  $(\eta^{6}$ -naphthalene)ruthenium(0), it is generally believed that  $Ru(\eta^{6}-naphthalene)(\eta^{4}-1,5-COD)$  (3b) is more labile than the corresponding monocyclic arene complex [9,20]. However, such tendency in arene ligand exchange among polycyclic arenes is unexplored to date. Therefore we studied arene ligand exchange reactions among polycyclic arene complexes [Eq. (3) and Table 2]. When the cationic anthracene complex 2d was treated with 3.0 equiv. of phenanthrene in CD<sub>2</sub>Cl<sub>2</sub> at room temperature, slow but quantitative arene exchange reaction took place in the absence of MeCN [21,22] to give the phenanthrene complex 2c and free anthracene (entry 10). On the other hand, treatment of 2c with 2.6 equiv. of free anthracene under the same conditions did not take place at all (entry 6). These facts clearly suggest that the cationic Ru moiety favors phenanthrene than anthracene. Complex 2c also did not react with perylene at all (entry 9). Similarly addition of 3 equiv. of benzene, naphthalene, triphenylene and pyrene to a  $CD_2Cl_2$  solution of the phenanthrene complex 2c at 20 °C, gave benzene complex 2a (86%), naphthalene complex 2b (25%), triphenylene complex 2e (59%) and pyrene complex 2f (6%) for 24 h, in 90%, 30%, 100% and 47% conversions, respectively (entries 4, 5, 7 and 8).



Table 2 Reaction of  $[Ru(n^6-arene)(n^5-cyclooctadienyl)]PF_6$  (2) with 3 equiv. of arenes at 20 °C in CD<sub>2</sub>Cl<sub>2</sub>

| Entry | Starting complex | Added arene<br>Triphenylene <sup>a</sup> | 0 h (%) |         | 24 h (%)   |                   |
|-------|------------------|------------------------------------------|---------|---------|------------|-------------------|
| 1     | 2a               |                                          | 2a      | 2e      | 2a         | 2e                |
|       |                  |                                          | (100)   | (0)     | (100)      | (0)               |
| 2     | 2b               | Phenanthrene                             | 2b      | 2c      | 2b         | 2c                |
|       |                  |                                          | (63)    | (35)    | (0)        | (86)              |
| 3     | 2b               | Pyrene                                   | 2b      | 2f      | 2b         | 2f                |
|       |                  |                                          | (88)    | (trace) | (57)       | (19)              |
| 4     | 2c               | Benzene                                  | 2a      | 2c      | 2a         | 2c                |
|       |                  |                                          | (10)    | (87)    | (86)       | (10)              |
| 5     | 2c               | Naphthalene                              | 2b      | 2c      | 2b         | 2c                |
|       |                  | -                                        | (27)    | (88)    | (25)       | (70)              |
| 6     | 2c               | Anthracene                               | 2c      | 2d      | 2c         | 2d                |
|       |                  |                                          | (100)   | (0)     | (100)      | (0)               |
| 7     | 2c               | Triphenylene <sup>b</sup>                | 2c      | 2e      | 2c         | 2e                |
|       |                  |                                          | (55)    | (21)    | (0)        | (59)              |
| 8     | 2c               | Pyrene                                   | 2c      | 2f      | 2c         | 2f                |
|       |                  |                                          | (94)    | (trace) | (53)       | (6)               |
| 9     | 2c               | Perylene <sup>c</sup>                    | 2c      | 2g      | 2c         | 2g                |
|       |                  | •                                        | (>99)   | (<1)    | (>99)      | (<1)              |
| 10    | 2d               | Phenanthrene                             | 2c      | 2d      | 2c         | 2d                |
|       |                  |                                          | (<1)    | (>99)   | (100)      | (0)               |
| 11    | 2d               | Perylene <sup>c</sup>                    | 2d      | 2g      | 2d         | 2g                |
|       |                  | -                                        | (45)    | (57)    | $(14)^{d}$ | (91) <sup>d</sup> |
| 12    | 2e               | Benzene                                  | 2a      | 2e      | 2a         | 2e                |
|       |                  |                                          | (0)     | (100)   | (0)        | (100)             |
| 13    | 2f               | Naphthalene                              | 2b      | 2f      | 2b         | 2f                |
|       |                  | -                                        | (23)    | (85)    | (85)       | (8)               |
| 14    | 2f               | Phenanthrene                             | 2c      | 2f      | 2c         | <b>2</b> f        |
|       |                  |                                          | (0)     | (100)   | (20)       | (29)              |
| 15    | 2f               | Anthracene                               | 2d      | 2f      | 2d         | 2f                |
|       |                  |                                          | (19)    | (80)    | (30)       | (43)              |
| 16    | 2f               | Pervlene                                 | 2f      | 2g      | 2f         | 2g                |
|       |                  | -                                        | (43)    | (17)    | (14)       | (63)              |
| 17    | 2g               | Anthracene                               | 2d      | 2g      | 2d         | 2g                |
|       | -                |                                          | (0)     | (69)    | $(8)^{d}$  | (54) <sup>d</sup> |

<sup>a</sup> 4.1 equiv.

<sup>b</sup> 1.1 equiv.

<sup>c</sup> Part of perylene remained unsolved because of poor solubility.

<sup>d</sup> 58 h.

Pyrene complex 2f is less stable than naphthalene complex 2b (entry 13). Treatments of 2f with 3 equiv. of anthracene and perylene gave a mixture of 2f and anthracene complex 2d (2f: 43%, 2d: 30%), and a mixture of 2f and perylene complex 2g (2f: 14%, 2g: 63%), respectively (entries 15 and 16). Though decomposition during the reaction in an NMR tube was not negligible for entries 2, 3, 7, 8 and 14-17, these reactions were basically reversible. It is notable that the arene exchange reactions between benzene and triphenylene did not proceed even in the presence of MeCN at 20 °C. Since MeCN is believed to act as an auxiliary ligand to assist in the ring-slippage to promote the arene exchange reaction [22], these findings in benzene and triphenylene complexes reflect tight binding to the ruthenium center, probably owing to a great barrier to the  $\eta^4$ -arene intermediate, under these conditions.

Inspite of these ambiguous arene exchange reactions, stability of these complexes:  $2a \sim 2e > 2c > 2b > 2g \sim$ 

2f > 2d. In other words, the order of coordination ability of arenes toward  $[Ru(1-5-\eta^5-cyclooctadienyl)]^+$  fragment is as follows: benzene ~ triphenylene > phenanthrene > naphthalene > perylene ~ pyrene > anthracene. This tendency can be correlated with a loss of aromaticity in the uncoordinated part of the aromatic compounds, since coordination of arenes to the ruthenium center leads to the increase of bond localizations in the uncoordinated part [13,23]. We can therefore conclude by these observations that the benzo fused rings, particularly those of acenes, decrease the thermal stability.

### 3. Concluding remarks

Present results show a preparation method of polycyclic arene complexes  $[Ru(\eta^6\text{-}arene)(1\text{-}5\text{-}\eta^5\text{-}cyclooctadie-nyl)]PF_6$  (2) in moderate to high yield. The arene exchange reactions revealed coordination ability of arenes toward  $[Ru(1\text{-}5\text{-}\eta^5\text{-}cyclooctadienyl)]^+$  fragment being in the

following order; benzene, triphenylene > phenanthrene > naphthalene > perylene ~ pyrene > anthracene. This is the first example to show the difference in coordination ability among these polycyclic arene ligands.

### 4. Experimental

### 4.1. General procedures

All manipulations and reactions were performed under dry nitrogen with use of standard Schlenk and vacuum line techniques. Diethyl ether, THF, benzene and hexane were distilled over benzophenone ketyl, and dichloromethane was distilled from Drierite; these solvents were stored under nitrogen atmosphere. The compound  $Ru(\eta^4-1,5-$ COD)( $\eta^{6}$ -1,3,5-COT) (1) was prepared according to literature procedure but magnetic stirring was used instead of sonication [24]. All other reagents were obtained from commercial suppliers (Wako Pure Chemical Industries, Aldrich). <sup>1</sup>H NMR spectra were recorded on JEOL LA300 (300.4 MHz for <sup>1</sup>H). Dichloromethane- $d_2$  and chloroform- $d_1$  were distilled over P<sub>4</sub>O<sub>10</sub> and stored under nitrogen. Chemical shifts ( $\delta$ ) are given in ppm, relative to tetramethylsilane for <sup>1</sup>H and external 85% H<sub>3</sub>PO<sub>4</sub> in D<sub>2</sub>O for <sup>31</sup>P. All coupling constants are given in Hz. Elemental analyses were carried out on a Perkin-Elmer 2400 series II CHN analyzer.

### 4.2. Prepartion of $[Ru(\eta^6-benzene)(1-5-\eta^5-cyclooctadiernyl)]PF_6$ (2a)

To an Et<sub>2</sub>O solution (6 ml) of Ru( $\eta^{4}$ -1,5-COD)( $\eta^{6}$ -1,3,5-COT) (1) (220 mg, 0.70 mmol), excess HPF<sub>6</sub> (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was washed with Et<sub>2</sub>O (5 ml × 2) and hexane (5 ml × 2) to give gray powder of [Ru( $\eta^{6}$ -benzene)(1-5- $\eta^{5}$ -cycloocatadienyl)]PF<sub>6</sub> (2a) in 34% yield (103 mg, 0.24 mmol). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  0.07 (qt, J = 14.0, 2.4 Hz, 1H, *endo*-7'-CH<sub>2</sub>), 1.25 (m, 1H, *exo*-7'-CH<sub>2</sub>), 1.44 (m, 2H, *endo*-6'- and -8'-CH<sub>2</sub>), 1.96 (m, 2H, *exo*-6'- and -8'-CH<sub>2</sub>), 4.47 (dt, J = 8.7, 4.2 Hz, 2H, 1'- and 5'-CH), 4.83 (br. t, 2H, 2'- and 4'-CH), 6.20 (s, 6H, C<sub>6</sub>H<sub>6</sub>), 6.61 (t, J = 6.9 Hz, 1H, 3'-CH). <sup>31</sup>P{<sup>1</sup>H} NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296 K): -143.6 (sep, J = 711 Hz, PF<sub>6</sub><sup>-</sup>).

# 4.3. Prepartion of $[Ru(\eta^6-naphthalene)(1-5-\eta^5-cyclooctadienyl)]PF_6$ (**2b**)

To an Et<sub>2</sub>O solution (6 ml) of **1** (103 mg, 0.33 mmol) with naphthalene (53.2 mg, 0.45 mmol) excess HPF<sub>6</sub> (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O (2 ml/6 ml) at -30 °C to give yellow powder of [Ru( $\eta^6$ -naphthalene)(1-5- $\eta^5$ -cycloocatadienyl)]PF<sub>6</sub> (**2b**) in 65% yield (103 mg, 0.21 mmol). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -0.26 (qt, J = 13.7,

2.7 Hz, 1H, endo-7'-CH<sub>2</sub>), 1.00 (m, 3H, exo-7'-CH<sub>2</sub> and endo-6'- and -8'-CH<sub>2</sub>), 1.67 (m, 2H, exo-6'- and -8'-CH<sub>2</sub>), 4.08 (dt, J = 8.7, 4.2 Hz, 2H, 1'- and 5'-CH), 4.39 (br t, J = 8 Hz, 2H, 2'- and 4'-CH), 6.27 (t, J = 6.9 Hz, 1H, 3'-CH), 6.35 (AA'BB', 2H, 1- and 4-CH or 2- and 3-CH), 6.72 (AA'BB', 2H, 2- and 3-CH or 1- and 4-CH), 7.76 (m, 4H, 5-, 6-, 7- and 8-CH). <sup>1</sup>P{<sup>1</sup>H} NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296K): $\delta$  –143.3 (sept, J = 713 Hz, PF<sup>-</sup><sub>6</sub>). m.p. = 129–131 °C (decomp.). Anal. Calc. for C<sub>18</sub>H<sub>19</sub>F<sub>6</sub>PRu: C, 44.91; H, 3.98 %. Found: C, 44.71; H, 4.25%.

### 4.4. Preparation of $[Ru(\eta^6-phenathrene)(1-5-\eta^5-cyclooctadienyl)]PF_6$ (2c)

To an  $Et_2O$  solution (6 ml) of 1 (104 mg, 0.33 mmol) with phenanthrene (72.5 mg, 0.41 mmol) excess  $HPF_6$  (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O (2 ml/f143 6 ml) at -30 °C to give orange powder of [Ru( $\eta^6$ -phenanthrene)(1-5- $\eta^{5}$ -cycloocatadienyl)]PF<sub>6</sub> (2c) in 65% yield (114 mg, 0.22 mmol). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -0.25 (qt, J = 14.0, 2.4 Hz, 1H, endo-7'-CH<sub>2</sub>), 0.83 (ddt, J = 16.5, 14.0, 3.0 Hz, 1H, exo-7'-CH<sub>2</sub>), 1.00 (m, 2H, endo-6'- and -8'-CH<sub>2</sub>), 1.61 (m, 2H, exo-6'- and -8'-CH<sub>2</sub>), 3.82 (dt, J = 9.0, 3.6 Hz, 1H, 1'- or 5'-CH), 3.90 (dt, J = 9.0, 3.6 Hz, 1H, 5'- or 1'-CH), 4.22 (ddd, J = 9.0, 6.9, 1.2 Hz, 1H, 2'- or 4'-CH), 4.44 (ddd, J = 9.0, 6.9, 1.2 Hz, 1H, 4'- or 2'-CH), 6.24 (t, J = 6.9 Hz, 1H, 3'-CH), 6.41 (t, J = 5.7 Hz, 1H, 2- or 3-CH), 6.54 (t, J = 5.7 Hz, 1H, 3- or 2-CH), 6.74 (d, J = 6.0 Hz, 1H, 1or 4-CH), 7.47 (d, J = 6.0 Hz, 1H, 4- or 1-CH), 7.47 (d, J = 9.3 Hz, 1H, 5- or 8-CH), 7.87 (dd, J = 9.3, 5.4 Hz, 1H, 6- or 7-CH), 7.90 (dd, J = 9.3, 5.4 Hz, 1H, 7- or 6-CH), 8.0 (m, 8- or 5-CH and 9- or 10-CH), 8.49 (m, 10- or 9-CH).  ${}^{31}P{}^{1}H{}$  NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296K):-143.5 (sep, J = 711 Hz,  $PF_6^-$ ). m.p. = 110–120 °C (decomp.). Anal. Calc. for C<sub>22</sub>H<sub>21</sub>F<sub>6</sub>PRu: C, 49.72; H, 3.98%. Found: C, 49.23; H, 4.42%.

### 4.5. Preparation of $[Ru(\eta^6-anthracene)(1-5-\eta^5-cyclooctadienyl)]PF_6$ (2d)

To an Et<sub>2</sub>O solution (6 ml) of **1** (106 mg, 0.33 mmol) with anthracene (70.2 mg, 0.39 mmol) excess HPF<sub>6</sub> (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O (2 ml / 6 ml) at  $-30 \,^{\circ}$ C to give yellow powder of [Ru( $\eta^6$ -anthracene)(1-5- $\eta^5$ -cycloocatadienyl)]PF<sub>6</sub> (2d) · 0.3 anthracene in 46% yield (107 mg, 0.15 mmol). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -0.38 (qt, J = 13.5, 2.4 Hz, 1H, endo-7'-CH<sub>2</sub>), 0.74 (ddt, J = 16.5, 13.5, 3.0 Hz, 2H, endo-6'- and -8'-CH<sub>2</sub>), 0.88 (m, 1H, exo-7'-CH<sub>2</sub>), 1.56 (ddqui, J = 16.5, 2.0, 1.8 Hz, 2H, exo-6'- and 8'-CH<sub>2</sub>), 4.22 (br.dt, J = 8, 4 Hz, 2H, 1'- and 5'-CH), 4.40 (br.t, J = 8 Hz, 2H, 2'- and 4'-

CH), 6.12 (t, J = 6.9 Hz, 1H, 3'-CH), 6.37 (AA'BB', 2H, 1- and 4-CH or 2- and 3-CH), 6.92 (AA'BB', 2H, 2and 3-CH or 1- and 4-CH). 7.58 (AA'BB', 2H, 5- and 8-CH or 6- and 7-CH), 7.99 (AA'BB', 6- and 7-CH or 5- and 8-CH), 8.43 (s, 2H, 9- and 10-CH). <sup>31</sup>P{<sup>1</sup>H} NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296 K): $\delta$  –143.5 (sept, J = 711 Hz, PF<sub>6</sub><sup>-</sup>). m.p. = 134–137 °C. Anal. Calc. for C<sub>22</sub>H<sub>21</sub>F<sub>6</sub>PRu · 0.3 anthracene: C, 54.21; H, 4.15%. Found: C, 54.65; H, 4.48%.

# 4.6. Preparation of $[Ru(\eta^6-triphenylene)(1-5-\eta^5-cyclooctadienyl)]PF_6$ (2e)

To an  $Et_2O$  solution (6 ml) of 1 (106 mg, 0.34 mmol) with triphenylene (88.3 mg, 0.38 mmol) excess  $HPF_6$  (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O (2 ml/4 ml) at -30 °C to give yellow crystal of  $[Ru(\eta^6-triphenylene)(1-5-\eta^5-cycloocata$ dienyl)]PF<sub>6</sub> (2e) in 90% yield (178 mg, 0.31 mmol). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  -0.31 (qt, J = 13.8, 2.4 Hz, 1H, endo-7'-CH<sub>2</sub>), 0.65 (ddt, J = 16.8, 13.5, 3.0 Hz, 2H, endo-6'and -8'-CH<sub>2</sub>), 0.88 (m, 1H, exo-7'-CH<sub>2</sub>), 1.5 (dm, J = 16.8 Hz, 2H, exo-6'- and 8'-CH<sub>2</sub>), 3.64 (dt, J = 9.0, 3.6 Hz, 2H, 1'- and 5'-CH), 4.32 (tm, J = 7 Hz, 2H, 2'and 4'-CH), 6.14 (t, J = 6.9 Hz, 1H, 3'-CH), 6.51 (AA'BB', 2H, 2- and 3-CH), 7.30 (AA'BB', 2H, 1- and 4-CH), 7.78 (td, J = 7.2, 1.2 Hz, 2H, 6- and 11-CH or 7- and 10-CH), 7.86 (td, J = 7.2, 1.2 Hz, 2H, 7- and 10-CH or 6- and 11-CH), 8.34 (dd, J = 7.2, 1.2 Hz, 2H, 5- and 12-CH or 8and 9-CH), 8.64 (dd, J = 7.2, 1.2 Hz, 2H, 8- and 9-CH or 5- and 12-CH).<sup>1</sup>P{<sup>1</sup>H} NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296 K): $\delta$  -143.2 (sept, J = 713 Hz,  $PF_6^-$ ). m.p. = 160–162 °C (decomp.). Anal. Calc. for  $C_{26}H_{23}F_6PRu$ : C, 53.70; H, 3.99%. Found: C, 53.43; H, 4.23%.

# 4.7. Preparation of $[Ru(\eta^6-pyrene)(1-5-\eta^5-cyclooctadienyl)]PF_6$ (**2***f*)

To an Et<sub>2</sub>O solution (6 ml) of 1 (107 mg, 0.34 mmol) with pyrene (82.3 mg, 0.41 mmol) excess HPF<sub>6</sub> (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O (2 ml/4 ml) at -30 °C to give orange powder of  $[Ru(\eta^6-pyrene)(1-5-\eta^5-cycloocatadienyl)]PF_6$ (**2f**) in 62% yield (117 mg, 0.21 mmol). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = -0.4$  (qt, 1H, endo-7'-CH<sub>2</sub>), 1.0 (m, 3H, exo-7'-, endo-6'and -8'-CH2), 1.5 (m, 1H, exo-6'- or -8'-CH2), 1.6 (m, 1H, exo-8'- or -6'-CH<sub>2</sub>), 3.7 (m, 2H, 1'- and 5'-CH), 3.87 (br.t, 2H, 2'- and 4'-CH<sub>2</sub>), 5.71 (t, J = 6.7 Hz, 3'-CH), 6.76 (t, J = 6.3 Hz, 1H, 2-CH), 6.98 (d, J = 6.3 Hz, 2H, 1- and 3-CH), 7.76 (d, J = 9.3 Hz, 2H, 4- and 10-CH), 8.2 (m, 3H, 6-, 7- and 8-CH), 8.24 (d, J = 9.3 Hz, 2H, 5- and 9-CH).  ${}^{1}P{}^{1}H{}$  NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296 K): $\delta$  –143.3 (sept, J = 713 Hz,  $PF_6^-$ ). m.p. = 164–168 °C (decomp.). Anal. Calc. for C<sub>24</sub>H<sub>21</sub>F<sub>6</sub>PRu: C, 51.90; H, 3.81%. Found: C, 52.50; H, 4.22%.

### 4.8. Preparation of $[Ru(\eta^6-perylene)(1-5-\eta^5-cyclooctadienyl)]PF_6(2g)$

To an Et<sub>2</sub>O solution (6 ml) of 1 (107 mg, 0.34 mmol) with pervlene (98.1 mg, 0.39 mmol) excess HPF<sub>6</sub> (6 drops) was added to give orange precipitate. After removal of the solution layer, the resulting precipitate was recrystallized from cold CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O (2 ml/4 ml) at -30 °C to give yellow powder of  $[Ru(\eta^6-perylene)(1-5-\eta^5-cycloocatadie$ nyl)] $PF_6$  (2g) in 64% yield (158 mg, 0.22 mmol). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -0.35 (br.g, J = 14 Hz, 1H, endo-7'-CH<sub>2</sub>), 0.9 (m, 3H, exo-7'-, endo-6'- and -8'-CH<sub>2</sub>), 1.5 (m, 2H, exo-6'- and  $-8'-CH_2$ ), 3.66 (br.dt, J = 8, 4 Hz, 1H, 1'- or 5'-CH), 3.73 (br.dt, J = 8, 4 Hz, 1H, 5'- or 1'-CH), 3.98 (br.q, J = 7 Hz, 2H, 2'- and 4'-CH), 5.88 (t, J = 6.6 Hz, 1H, 3'-CH), 6.5 (m, 2H, 1- and 3-CH), 6.93 (m, 1H, 3-CH), 7.49 (d, J = 8.1 Hz, 1H, 12-CH), 7.57 (t, J = 7.8 Hz, 1H, 8-CH), 7.58 (t, J = 7.6 Hz, 1H, 11-CH), 7.82 (d, J = 8.1 Hz, 1H, 7-CH), 7.9 (m, 2H, 5- and 6-CH), 7.92 (d, J = 7.2 Hz, 1H, 4-CH), 8.16 (d, J = 8.1 Hz, 1H, 9-CH), 8.22 (d, J = 7.5 Hz, 1H, 10-CH).<sup>31</sup>P{<sup>1</sup>H} NMR (121.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 296K): $\delta$  -143.5 (sept,  $J = 711 \text{ Hz}, \text{ PF}_{6}^{-}$ ). m.p. = 162–164 °C (decomp). Anal. Calc. for C<sub>38</sub>H<sub>29</sub>F<sub>6</sub>PRu · 0.5perylene: C, 62.38; H, 4.00%. Found: C, 61.91; H, 4.20%.

### 4.9. Reduction of 2a with $NaBH_4$

A THF solution (6 ml) of a mixture of [Ru( $\eta^6$ -benzene)- $(1-5-\eta^{5}-cycloocatadienyl)$ ]PF<sub>6</sub> (**2a**) (75 mg, 0.17 mmol) and 5 equiv. of NaBH<sub>4</sub> (32.0 mg, 0.85 mmol) at 0 °C for 20 h. The resulting solution was evaporated to dryness and then the residue was extracted with hexane  $(10 \text{ ml} \times 3)$  to give an orange solution, which was concentrated to give orange powder. After removal of the solution by cannular tube, the collected powder was dried under reduced pressure to give orange powder of 4a in 64% yield (32.0 mg, 0.11 mmol). 4a: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): δ 0.54 (m, 2H, endo-3'- and -7'-CH<sub>2</sub>), 1.1 (m, 1H, exo-7'-CH<sub>2</sub>), 1.6-2.2 (m, 4H, 6'- and 8'-CH<sub>2</sub>), 2.41 (td, J = 13.2, 7.8 Hz, 1H, exo-3'-CH<sub>2</sub>), 2.67 (td, J = 7.8, 4.5 Hz, 2H, 1'- and 5'-CH or 2'- and 4'-CH), 2.79 (td, J = 7.8, 4.2 Hz, 2H, 2'- and 4'-CH or 1'- and 5'-CH), 5.29 (s, 6H,  $C_6H_6$ ). m.p. = 64– 68 °C (decomp.).

### 4.10. Reduction of 2b with NaBH<sub>4</sub>

Complex **2b** was treated with NaBH<sub>4</sub> by similar workup described for **2a**. [Ru( $\eta^6$ -naphthalene)(1-5- $\eta^5$ -cycloocatadienyl)]PF<sub>6</sub> (**2b**) (91.1 mg, 0.19 mmol), NaBH<sub>4</sub> (36.4 mg, 0.96 mmol) at 0 °C for 20 h. The NMR analysis of this the product (orange powder, 17.7 mg) by use of 1,4-dioxane as an internal standard showed formation of complex **3b** (22%) with unidentified species. **3b**: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  1.71 (m, 8H, 3'-, 4'- 7'- and 8'-CH<sub>2</sub>), 4.39 (br s, 4H, 1'-, 2'-, 5'- and 6'-CH), 4.75 (AA'BB', 2H, 1- and 4-CH or 2- and 3-CH), 6.05 (AA'BB', 2H, 2- and 3-CH or 1- and 4-

*CH*), 7.40 (m, 4H, 5-, 6-, 7- and 8-*CH*). m.p. = 187–190 °C (decomp.).

### 4.11. Reduction of 2c with NaBH<sub>4</sub>

Complex 2c was treated with NaBH<sub>4</sub> by similar workup described for **2a**. [Ru( $\eta^6$ -phenanthrene)(1-5- $\eta^5$ -cycloocatadienyl)]PF<sub>6</sub> (2c) (201 mg, 0.38 mmol), NaBH<sub>4</sub> (71.5 mg, 1.9 mmol) at 0 °C for 20 h. Orange powder of a mixture of 3c and 4c (1.0:8.3 in CD<sub>2</sub>Cl<sub>2</sub> at 19.5 °C) in 76% yield (111 mg, 0.28 mmol). **3c**: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  1.6 (m, 2H, endo-3'- and -7'-CH<sub>2</sub> (or endo-4'- and -8'-CH<sub>2</sub>)), 1.7 (m, 6H, exo-3'-, -4'-, -7'- and -8'-CH2 and endo-4'- and -8'-CH<sub>2</sub> (or endo-3'- and 7'-CH<sub>2</sub>)), 3.0 (m, 2H, 1'- and 5'-CH (or 2'- and 6'-CH)), 3.3 (m, 2H, 2'- and 6'-CH (or 1'- and 5'-CH)), 4.91 (d, J = 5.4 Hz, 1H, 1-CH), 5.48 (d, J = 5.4 Hz, 1H, 4-CH), 6.07 (t, J = 5.4 Hz, 1H, 2- or 3-CH), 6.11 (t, J = 5.4 Hz, 1H, 3- or 2-CH), 7.33 (d, J = 9.0 Hz, 1H, 10-CH), 7.59 (m, 2H, 6- and 7-CH), 7.64 (d, J = 9.0 Hz, 1H, 9-CH), 7.86 (m, 1H, 5- or 8-CH), 8.13 (m, 1H, 8- and 5-CH). 4c: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$ -0.21 (br.g, J = 12 Hz, 1H, endo-7'-CH<sub>2</sub>), 0.3 (m, 2H, exo-7'-CH2 and endo-6'- or -8'-CH2), 1.1 (m, 1H, exo-8'or  $-6'-CH_2$ ), 1.2 (overlapped with incorporated hexane, exo-6'- or  $-8'-CH_2$ ), 1.5 (overlapped with signals due to **3c**, exo-8'- or  $-6'-CH_2$ ), 1.7 (overlapped with signals due to **3c**, endo-3'-CH<sub>2</sub>), 2.16 (dt, J = 13.5, 7.5 Hz, 1H, exo-3'-CH<sub>2</sub>), 2.38 (td, J = 8.3, 4.5 Hz, 1H, 1'- or 5'-CH), 2.53 (td, J = 8.1, 4.5 Hz, 1H, 4'- or 2'-CH), 2.7 (m, 2H, 2'- or 4'-CH and 5'- or 1'-CH), 4.81 (d, J = 5.4 Hz, 1H, 1- or 4-CH), 5.43 (d, J = 5.4 Hz, 1H, 4- or 1-CH), 5.91 (t, J = 5.4 Hz, 1H, 2- or 3-CH), 6.00 (t, J = 5.4 Hz, 1H, 3or 2-CH), 7.39 (d, J = 8.4 Hz, 1H, 9- or 10-CH), 7.56 (d, J = 8.4 Hz, 1H, 10- or 9-CH), 7.6 (m, 2H, 6- and 7-CH), 7.86 (m, 1H, 5- or 8-CH), 8.23 (m, 1H, 8- or 5-CH). m.p. =  $122-124 \circ C$  (decomp.). Anal. Calc. for  $C_{22}H_{22}Ru$ : C, 68.19; H, 5.72%. Found: C, 68.38; H, 5.29%.

### 4.12. Reduction of 2d with NaBH<sub>4</sub>

Complex **2d** was treated with NaBH<sub>4</sub> by similar workup described for **2a**. [Ru( $\eta^6$ -anthracene)(1-5- $\eta^5$ -cycloocatadie-nyl)]PF<sub>6</sub> (**2d**) · 0.3 anthracene (111.2 mg, 0.19 mmol), NaBH<sub>4</sub> (42.6 mg, 1.13 mmol) at 0 °C for 20 h. Pale yellow powder (33.3 mg), which was characterized as a crude free anthracene was obtained.

### 4.13. Reduction of 2e with NaBH<sub>4</sub>

A THF solution (6 ml) of a mixture of  $[Ru(\eta^6-triphenyl$  $ene)(1-5-\eta^5-cycloocatadienyl)]PF_6 (2e) (86.0 mg, 0.15 mmol)$ and 5 equiv. of NaBH<sub>4</sub> (42.0 mg, 1.10 mmol) was stirred at0 °C for 20 h. The resulting solution was evaporated to dryness and then the residue was extracted with benzene(5 ml × 3) to give an orange solution, which was concentrated to give orange powder. After removal of the solutionby cannular tube, the collected powder was under reduced pressure to give orange powder (57.1 mg). The NMR analysis of the powder showed formation of 3e in 23% yield and 4e in 53% yield. 3e: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -0.02 (m, 1H, endo-7'-CH2), 0.3 (m, 2H, exo-7'-CH2 and endo-6'- or -8'- $CH_2$ ), 1.1 (m, 1H, exo-8'- or -6'- $CH_2$ ), 1.2 (overlapped with incorporated hexane, exo-6'- or -8'-CH<sub>2</sub>), 1.5 (overlapped with signals due to 3c, exo-8'- or -6'-CH<sub>2</sub>), 1.7 (overlapped with signals due to 3e, endo-3'-CH<sub>2</sub>), 2.05 (dt, J = 12.9, 7.8 Hz, 1H,  $exo-3'-CH_2$ ), 2.29 (td, J = 8.4, 4.2 Hz, 2H, 1'and 5'-CH), 2.43 (td, J = 8.4, 4.5 Hz, 2H, 4'- and 2'-CH), 5.58 (AA'BB', 2H, 2- and 3-CH), 6.01 (AA'BB', 2H, 1and 4-CH), 7.78 (td, J = 7.2, 1.5 Hz, 2H, 6- and 11-CH or 7- and 10-CH), 7.60 (td, J = 7.2, 1.5 Hz, 4H, 7-, 10-CH and 6-, 11-CH), 8.17 (dd, J = 7.2, 1.5 Hz, 2H, 5- and 12-CH or 8- and 9-CH), 8.60 (dd, J = 7.2, 1.5 Hz, 2H, 8- and 9-CH or 5- and 12-CH). 4e: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  1.62 (m, 8H, 3'-, 4'- 7'- and 8'-CH<sub>2</sub>), 3.0 (br.s, 4H, 1'-, 2'-, 5'and 6'-CH), 5.64 (AA'BB', 2H, 2- and 3-CH), 6.15 (AA'BB', 2H, 1- and 4-CH), 7.64 (m, 4H, 7-, 10-CH and 6-, 11-CH), 8.11 (dd, J = 7.8, 1.5 Hz, 2H, 5- and 12-CH or 8- and 9-CH), 8.59 (dd, J = 7.8, 1.5 Hz, 2H, 8- and 9-CH or 5- and 12-CH).Similar treatment of 2e (89.9 mg, 0.15 mmol) with 1.6 equiv. of NaBH<sub>4</sub> (9.1 mg, 0.24 mmol) gave 3e (9%) and 4e (55%). Treatment of 2e (77.4 mg, 0.13 mmol) with 3.4 equiv. of NaBH<sub>4</sub> (16.7 mg, 0.44 mmol) gave 3e (9%) and 4e (63%). Treatment of 2e (35.1 mg, 0.087 mmol) with 11 equiv. of NaBH<sub>4</sub> (35.1 mg, 0.92 mmol) gave 3e (7%) and 4e (47%). m.p. =  $168-170 \circ C$  (decomp.).

#### 4.14. Reduction of 2f with NaBH<sub>4</sub>

Complex 2f was treated with NaBH<sub>4</sub> by similar workup described for **2a**. [Ru( $\eta^6$ -pyrene)(1-5- $\eta^5$ -cycloocatadienyl]PF<sub>6</sub> (**2f**) (167 mg, 0.30 mmol), NaBH<sub>4</sub> (57.1 mg, 1.51 mmol) at 0 °C for 20 h. Orange powder of 4f in 58% yield (72.0 mg, 0.17 mmol). **4f**: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  0.09 (br.t, J = 12 Hz, 2H, endo-6' and -8'-CH<sub>2</sub>), 0.25 (qt, J = 12, 2 Hz, 1H, endo-7'-CH<sub>2</sub>), 1.2 (m, 1H, exo-7'-CH<sub>2</sub>), 1.4 (m, 2H, exo-6'- and 8'-CH), 1.6 (br, endo-3'-CH<sub>2</sub>), 1.95 (dt, J = 12.9, 7.5 Hz, 1H, *exo-3'-CH*), 2.05 (td, J = 8.7, 4.5 Hz, 2H, 1'- and 5'-CH or 2'- and 4'-CH) 2.18 (td, J = 8.1, 6.0 Hz, 1H, 2'- and 4'-CH or 1'- and 5'-CH), 5.75 (d, J = 6 Hz, 2H, 1- and 3-CH), 5.87 (t, J = 6 Hz, 1H, 2-CH), 7.36 (d, J = 9 Hz, 2H, 4- and 10-CH or 5- and 9-CH), 7.67 (d, J = 9 Hz, 2H, 5- and 9-CH or 4- and 10-CH), 7.73 (dd, J = 7.5, 6.3 Hz, 1H, 7-CH), 7.5 (br,t, J = 7.5 Hz, 2H, 6- and 8-CH), and incorporated 0.5 equiv. of pyrene was observed at 8.03 (dd, J = 7.2, 0.9 Hz, 2H), 8.11 (s, 4 H), 8.21 (d, J = 7.2 Hz, 4H). m.p. =  $138-140 \circ C$  (decomp.).

### 4.15. Reduction of 2g with NaBH<sub>4</sub>

Complex **2g** was treated with NaBH<sub>4</sub> by similar workup described for **2a**. [Ru( $\eta^6$ -perylene)(1-5- $\eta^5$ -cycloocatadie-nyl)]PF<sub>6</sub> (**2d**) · 0.5 perylene (70.8 mg, 0.10 mmol), NaBH<sub>4</sub>

(22.9 mg, 0.60 mmol) at 0 °C for 20 h. Pale yellow powder (38.6 mg), which was characterized as crude free perylene with trace amount of perylene complexes, was obtained.

#### 4.16. Ligand exchange reaction of arenes

Complex 2a (7.3 mg, 0.012 mmol) and 4.1 equiv. of triphenylene (11.5 mg, 0.050 mmol) were placed in an NMR tube under vacuum into which dry CD<sub>2</sub>Cl<sub>2</sub> (0.60 ml) was introduced by valve-to-valve distillation. The reaction system was placed at 20 °C for 20 h. The product was confirmed by the <sup>1</sup>H NMR spectrum on the basis of 1.4-dioxane as an internal standard (Table 2 entry 1). Similarly, following reactions were also monitored by the <sup>1</sup>H NMR spectroscopy. Although part of ruthenium complexes decomposed during the reaction and the integration of signals may involve unavoidable errors, the results were shown in Table 2. entry 2: 2b (13.9 mg, 0.029 mmol) with 3.0 equiv. of phenanthrene (15.4 mg, 0.086 mmol). entry 3: 2b (24.9 mg, 0.052 mmol) with 3.1 equiv. of pyrene (33.6 mg, 0.16 mmol). entry 4: 2c (12.4 mg, 0.023 mmol) with 3.0 equiv. of benzene (6.2 ms) $\mu$ l, 0.069 mmol). entry 5: 2c (9.9 mg, 0.018 mmol) with 3.1 equiv. of naphthalene (7.3 mg, 0.056 mmol). entry 6: 2c (15.8 mg, 0.029 mmol) with 2.6 equiv. of anthracene (13.2 mg, 0.074 mmol). entry 7: 2c (14.7 mg, 0.027 mmol) with 1.1 equiv. of triphenylene (6.8 mg, 0.029 mmol). entry 8: 2c (20.3 mg, 0.038 mmol) with 2.9 equiv. of pyrene (23.1 mg, 0.11 mmol). entry 9: 2c (15.4 mg, 0.029 mmol) with 3.0 equiv. of pervlene (21.8 mg, 0.086 mmol). entry 10: 2d(20.3 mg, 0.034 mmol) with 3.0 equiv. of phenanthrene (18.1 mg, 0.010 mmol). entry 11: 2d (15.7 mg, 0.026 mmol) with 3.1 equiv. of perylene (20.1 mg, 0.080 mmol). entry 12: 2e (19.5 mg, 0.033 mmol) with 3.0 equiv. of benzene (8.9  $\mu$ l, 0.10 mmol). entry 13: 2f (12.8 mg, 0.023 mmol) with 2.8 equiv. of naphthalene (8.4 mg, 0.065 mmol). entry 14: 2f (13.5 mg, 0.024 mmol) with 3.1 equiv. of phenanthrene (13.4 mg, 0.075 mmol). entry 15: 2f (14.9 mg, 0.027 mmol) with 2.9 equiv. of anthracene (14.2 mg, 0.079 mmol). entry 16: 2f (14.6 mg, 0.026 mmol) with 3.1 equiv. of perylene (20.1 mg, 0.080 mmol). entry 17: 2g (13.9 mg, 0.018 mmol) with 3.1 equiv. of anthracene (10.1 mg, 0.056 mmol).

#### 4.17. X-ray structure analysis of complex 2g

Single crystals of **2g** suitable for X-ray analysis were obtained from a mixture of CH<sub>2</sub>Cl<sub>2</sub> and Et<sub>2</sub>O. A single crystal was selected by using monochromated microscope and mounted on the top of capillary using Paraton-N oil. Diffraction experiments were performed on a Rigaku RASA-7R diffractometer with graphite-monochromated MoK $\alpha$  radiation ( $\lambda = 0.71069$  Å). The crystallographic data and details associated with data collection for **2g** are given in Table 3. The data were processed using the teXsan crystal solution package operating on a SGI O2 workstation. The structure was solved by Patterson Meth-

| Fable 3               |             |                                                                          |             |  |
|-----------------------|-------------|--------------------------------------------------------------------------|-------------|--|
| Trystallographic data | for complex | $2 \mathbf{\sigma} \cdot \mathbf{CH} \cdot \mathbf{CI} \cdot \mathbf{v}$ | 0 Sporylopo |  |

| erjotanographie auta for compten -g en          | ingeng engleng                                                     |
|-------------------------------------------------|--------------------------------------------------------------------|
| Formula                                         | C <sub>28</sub> H <sub>22</sub> Cl <sub>2</sub> F <sub>6</sub> PRu |
| Formula weight                                  | 675.42                                                             |
| Crystal system                                  | Triclinic                                                          |
| Lattice type                                    | Primitive                                                          |
| a (Å)                                           | 11.514(5)                                                          |
| b (Å)                                           | 15.544(7)                                                          |
| <i>c</i> (Å)                                    | 11.038(5)                                                          |
| α (°)                                           | 108.57(4)                                                          |
| β (°)                                           | 116.50(3)                                                          |
| γ (°)                                           | 79.97(4)                                                           |
| $V(\text{\AA}^3)$                               | 1674(1)                                                            |
| Space group                                     | P - 1 (No.2)                                                       |
| Z value                                         | 2                                                                  |
| $D_{\rm calc} ({\rm g}{\rm cm}^{-3})$           | 1.339                                                              |
| F(000)                                          | 674.00                                                             |
| $\mu$ (Mo K $\alpha$ ) (cm <sup>-1</sup> )      | 7.22                                                               |
| Temp. (K)                                       | 200                                                                |
| Scan-type                                       | $\omega$ –2 $\theta$                                               |
| $2\theta_{\max}$ (°)                            | 55.0                                                               |
| Number of reflections measured                  | Total: 8051, unique: 7671                                          |
| Structure solution                              | Patterson methods (SAPI)                                           |
| Number of observations $(I \ge 3.00 \sigma(I))$ | 3578                                                               |
| Number of variables                             | 443                                                                |
| Reflection/parameter ratio                      | 8.08                                                               |
| R                                               | 0.0936                                                             |
| $R_w$                                           | 0.133                                                              |
| GOF                                             | 1 216                                                              |

ods (SAPI). An absorption correction was applied with the program PSI-scan. All non-hydrogen atoms were found on difference maps and were refined anisotropically. All hydrogen atoms were located in the calculated positions. Crystallographic thermal parameters are given in Table 3.

### Acknowledgments

This work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan. Authors thank Ms. S. Kiyota and Ms. Y. Sakate for elemental analyses.

#### Appendix A. Supplementary material

CCDC 627199 contains the supplementary crystallographic data for **2g**. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2007.02.023.

#### References

[1] (a) H. Le Bozec, D. Touchard, P.H. Dixneuf, Adv. Organomet. Chem. 29 (1989) 163; (b) M.A. Bennett, Complexes of ruthenium abd osmium containing  $\eta^2$ - $\eta^6$  hydrocarbon ligands: (iii) complexes containing six- seven- and eight-membered rings, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7. Pergamon, Oxford, UK, p. 549;

(c) M.A. Bennett, Coord. Chem. Rev. 166 (1997) 225;

(d) G. Bodes, F.W. Feinemann, G. Jobi, J. Klodwig, S. Newmann,

U. Zenneck, Eur. J. Inorg. Chem. (2003) 281;

(e) P. Pertici, A. Verrazzani, E. Pitzalis, A.M. Caporusso, G. Vitulli, J. Organomet. Chem. 621 (2001) 246.

- [2] (a) P. Pertici, V. Ballantini, P. Salvadori, M.A. Bennett, Organometallics 14 (1995) 2565;
  - (b) A. Fukuoka, T. Nagano, S. Furuta, M. Yoshizawa, M. Hirano, S. Komiya, Bull. Chem. Soc. Jpn. 71 (1998) 1409;
  - (c) J. Takaya, J.F. Hartwig, J. Am. Chem. Soc. 127 (2005) 5756;
  - (d) C. Daguenet, R. Scopelliti, P.J. Dyson, Organometallics 23 (2004) 4849;

(e) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 117 (1995) 7562;

(f) P. Brandt, P. Roth, P.G. Andersson, J. Org. Chem. 69 (2004) 4885;

(g) A.J. Davenport, D.L. Davies, J. Fawcett, D.R. Russell, Dalton Trans. (2004) 1481;

(h) R. Castarlenas, D. Sémeril, A.F. Noel, A. Demonceau, P.H. Dixneuf, J. Organomet. Chem. 663 (2002) 235.

[3] (a) P.J. Fagan, M.D. Ward, J.V. Caspar, J.C. Calabrese, P.J. Krusic, J. Am. Chem. Soc. 110 (1988) 2981;

(b) K.-D. Piltzko, B. Wehrle, B. Rapko, J. Dannheim, V. Boekelheide, J. Am. Chem. Soc. 112 (1990) 6556;

(c) M. Kimura, H. Adbel-Halim, D.W. Robinson, D.O. Cowan, J. Organomet. Chem. 403 (1991) 365;

(d) H. Nagashima, T. Fukahori, K. Aoki, K. Itoh, J. Am. Chem. Soc. 115 (1993) 10430;

(e) R. Bhalla, C.J. Boxwell, S.B. Duckett, P.J. Dyson, D.G. Humphrey, J.W. Steed, u P. Suman, Organometallics 21 (2002) 924.

- [4] T. Shibasaki, N. Komine, M. Hirano, S. Komiya, Organometallics 25 (2006) 523, and references cited therein.
- [5] J.K. Burdett, E. Canadell, Organometallics 4 (1985) 805.
- [6] (a) M.D. Ward, Organometallics 6 (1987) 754;
  (b) J.-M. Lehn, Angew, Chem., Int. Ed. Engl. 27 (1988) 89;
  (c) J.S. Miller, A.J. Epstein, W.M. Reiff, Science 240 (1988) 40.
- [7] M.A. Bennett, T.W. Matheson, G.B. Robertson, A.K. Smith, P.A. Tucker, Inorg. Chem. 19 (1980) 1014.
- [8] L.C. Porter, J.R. Polam, J. Mahmoud, Organometallics 13 (1994) 2092.
- [9] M.A. Bennett, H. Neumann, M. Thomas, X. Wang, P. Pertici, P. Salvadori, G. Vitulli, Organometallics 10 (1991) 3237.
- [10] M. Crocker, M. Green, J.A.K. Howard, N.C. Norman, D.M. Thomas, J. Chem. Soc., Dalton Trans. (1990) 2299.
- [11] (a) G. Vitulli, P. Pertici, P. Salvadori, J. Chem. Soc., Dalton Trans. (1984) 2255;

(b) F. Heinemann, J. Klodwig, F. Knoch, M. Wündisch, U. Zenneck, Chem. Ber. 130 (1997) 123.

[12] (a) P. Pertici, G. Simonelli, G. Vitulli, G. Deganello, P. Sandrini, A. Mantovani, J. Chem. Soc., Chem. Commun. (1977) 132;

(b) P. Pertici, G. Vitulli, M. Paci, L. Porri, J. Chem. Soc., Dalton Trans. (1980) 1961;

- (c) P. Pertici, G. Vitulli, R. Lazzaroni, P. Salvadori, P. Barili, J. Chem. Soc., Dalton Trans. (1982) 1019;
- (d) P. Pertici, G. Vitulli, C. Carlini, F. Ciardelli, J. Mol. Catal. 11 (1981) 353.
- [13] M. Hirano, T. Shibasaki, S. Komiya, M.A. Bennett, Organometallis 21 (2002) 5738.
- [14] G. Vitulli, P. Pertici, C. Bigelli, Gazz. Chim. Itali. 115 (1985) 79.
- [15] (a) F. Bouachir, B. Chaudret, F. Dahan, F. Agbossou, I. Tkatchenko, Organometallics 10 (1991) 455;
  (b) F. Bouachir, B. Chaudret, I. Tkatchenko, J. Chem. Soc., Chem. Commun. (1986) 94.
- [16] M. Stebler-Röthlisberger, A. Salzer, H.B. Bürgi, A. Ludi, Organometallics 5 (1986) 298.
- [17] Bergens and Rautenstrauch reported formation of [RuH(1,3,5-COT)(diphosphine)]BF<sub>4</sub> and [Ru(1-5- $\eta^5$ -cyclooctadienyl)(diphosphine)]BF<sub>4</sub> by the treatment of **1** with Me-DUPHOS and BINAP in the presence of HBF<sub>4</sub>, respectively. This fact suggests flexible transformation between hydrido( $\eta^6$ -1,3,5-COT) and  $\eta^5$ -cyclooctadienyl moieties. Although hydrido( $\eta^6$ -1,3,5-COT) species was not observed for **2** at all, such contribution may also help facile slippage of the  $6\pi$  arene ligand in **2**: J.A. Wiles, S.H. Bergens, K.P.M. Vanhessche, D.A. Dobbs, V. Rautenstrauch, Angew. Chem. Int. Ed. 40 (2001) 914.
- [18] Accompanied with formation of free anthracene, trace amount of signals appeared in  $\delta$  7.7, 7.4, 5.4, 5.2, 4.9, 3.9, 3.4, and aliphatic regions for the reaction of **2d** with NaBH<sub>4</sub>. Though it is clear that these signals are different from those of Ru( $\eta^6$ -anthracene)( $\eta^4$ -1,5-COD) [13], further identification of these signals was difficult because of very low content of these species. For the reaction of **2g** with NaBH<sub>4</sub>, free perylene was dominantly obtained. Though this product also contained small amount of species, which might be assignable to perylene complexes, further identification was also difficult.
- [19] Although the reaction mechanism for this reduction reaction is not clear to date, the selectivity in the reduction giving 3 and 4 would be due to independent reaction mechanisms: one is the hydride attack on the ruthenium center followed by migration of the Ru–H to the cycloocatdienyl fragment, and the other is a direct attack of hydride ion on the cyclooctadienyl fragment.
- [20] G. Vitulli, P. Pertici, P. Salvadori, J. Chem. Soc., Dalton Trans. (1984) 2255.
- [21] Acetonitrile was reported to accelerate ligand exchange reaction of arenes. see ref [11a].
- [22] M.A. Bennett, Z. Lu, X. Wang, M. Bown, D.C.R. Hockless, J. Am. Chem. Soc. 120 (1998) 10409.

[23] (a) B.J. Nicholson, J. Am. Chem. Soc. 88 (1966) 5156;
(b) R.H. MItchell, Y. Chen, N. Khalifa, P. Zhou, J. Am. Chem. Soc. 120 (1998) 1785;
(c) J.E. McGrady, R. Stranger, M. Bown, M.A. Bennett, Organo-

- metallics 15 (1996) 3109. [24] (a) P. Pertici, G. Vitulli, Inorg. Synth. 22 (1983) 176;
- (b) K. Itoh, H. Nagashima, T. Ohshima, N. Oshima, H. Nishiyama, J. Organomet. Chem. 272 (1984) 179.